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What are intermolecular forces?

N2 crystal

& & @ why are the N> molecules arranged this
z z way?
z z @ what are the optimal intermolecular
distances?

$e ¢
z z @ what is the physical origin of the
b S ¢

interactions that govern the structure?

< v

Intermolecular interactions

@ fragments (subsystems) are well-defined and preserve their identity
@ usually between closed shell molecules, ions or atoms

@ much weaker than chemical bonding

@ long range

J. Angyan (EMQC) IMF 3 /201



Why are intermolecular forces interesting?

Intermolecular forces play an important réle in numerous fields

Deviations of gases from ideal behaviour (pressure, viscosity, diffusion, thermal
conductivity).

Existence of condensed phases matter

Properties of solids and liquids e.g. melting and boiling points.
Organization of matter solids, crystal structures

Polymorphism requires a very accurate knowledge of intermolecular forces.
Liquid structure (pair distribution function, etc.)

Reaction mechanisms (steric effects,

Organization of soft matter, biopolymers.

Heterogeneous catalysis

Formation of surface monolayers, micelles and membranes,

Transport of ions and molecules across biological membranes

Atmospheric chemistry, etc...
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Gecko feet adhesion by van der Waals forces

Autumn et al. Proc. Natl. Acad. Sci. 99 (2002) 122.
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Intermolecular potential
Ar, dimer

R

®o—©@

At infinitely large distance, there is no
interaction: the energy is the sum of the
energy of isolated atoms

Eit(c0) = Ea+ EpB

At an arbitrary, finite R distance, the
total energy

Et(R) = Ea+ Es +U(R)
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Interaction-dependent contribution,
U(R),the interaction energy or
intermolecular pair-potential

U(R) = Eiot(R) — Eror(0)
= Ewt(R) — Ea — EB

The intermolecular pair-potential is the
work to bring together the two systems
from infinity to the distance R, against
the intermolecular force, F(R)

U(R) = /Roo F(r)dr

where

F(R) =~

_dv
dR
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Potential and force

@ o is the hard core radius

UR)

@ ¢ is the well depth

—e.

@ repulsive for R < R,

attractive for R > R,

F(R)

s @ for 0 < R < R, negative, but
repulsive

R

Intermolecular energy can negative, but the interaction is repulsive (F>0).
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General intermolecular potential

@ For polyatomic subsystems the
intermolecular interaction energy

U(Ra Wiqa, qB)

depends on the relative position
and orientation {R,w} and on
the internal coordinates {q 4, qg}

@ R: intermolecular vector (in polar
coordinates)

@ w: relative Euler-angles

Even if we neglect the intramolecular degrees of freedom, {q 4, gz},
the intermolecular PES (potential energy surface) is six-dimensional.
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Cluster expansion of the interaction energy

The interaction energy can be decomposed to the sum of one-, two-, three-, etc. body
contributions

UN—ZU +3 ZU”+3,ZUW+ ,ZU“wr

ijk T ijkl

@ one-body: geometrical deformation of the monomers
@ two-body: dominating term (additivity)
@ three-body, four-body, etc. (non-additivity)

Effective (system-dependent) pair-potential

Un = ZUi + % ZUSF(N)
i ij

may be quite different from the pure pair-potential.

Attention: an effective pair-potential, usually obtained by fitting condensed-phase
experimental data, is usually not valid for simple binary complexes.
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Interaction ranges

Range ' short
Subsystemsi difficul

Overlap | strong
Description; SM

U(R)

long
easy to identify

no
PT

e B s e e T
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Calculation of intermolecular interaction energy

Hap=Ha+ Ha+ \Vag

Supermolecule approach

U = AE = E(AB) — E(A) — E(B)

difference of the total energies (large
numbers)

@ technically very simple

@ does not depend on the intensity of
the interaction

@ difficult to interpret in terms of the
monomer properties

@ energy components may have large
errors with respect to the
interaction energy

@ systematic errors (BSSE)

Perturbation theory

U=AE=>) X\AE"
n=1
directly, from the power series expansion
in the strength of interaction

@ leads directly to the interaction
energy

@ based on the monomer
wavefunction/properties

@ easy to interpret (physical insight,
decomposition)

@ provides basis of approximate
analytical energy expressions

@ is the expansion convergent?
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Water molecule density

Electron density isosurface at 0.05 e/A3
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Water molecule electrostatic potential

Electrostatic potential isosurfaces at 0.1 e/A3
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Change of electron density under field

F,=0.028 a.u.; electron density isosurface at +0.05 e/A3
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Change of electron density under field

F, = 0.028 a.u.; deformation density isosurfaces at +0.001 e/A3
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Change of electrostatic potential under field

F, = 0.028 a.u.; potential difference isosurface at £0.01 e/A3
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Long-range correlation effect on the density

BD(T), R=9 au

6p(r) l 3x1077 au

I —3x107 au

He dimer: attractive London dispersion forces are due to tiny
charge density rearrangements, predicted by Feynmann in 1939.
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Short range antisymmetry effect on the density

N

AN AT

iq‘*‘\'%'::%‘:;i?:....

Q\\\‘\‘t%*:%ﬁ':#iif::..
S
W

s

He dimer deformation density 0(7") = 0He, (T) — OHe, (") — QHe, (T)

At short distances electrons density is depleted between the two closed shell atom
consequence of the Pauli principle.
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Main contributions to the interaction energy

Pairwise
Contribution Additive?  Sign  Comment
Long-range (U ~ R™™)
Electrostatic Yes + Strong orientation dependence
Induction No — Strongly non-additive
Dispersion approx. - Always present
Short-range (U ~ e~ %)
Penetration Yes - Can be repulsive at very short range
Overlap repulsion No + Dominates at very short range
Damping approx. + Antisym. effect on induction and disp.
Charge transfer No - Donor-acceptor interaction

J. Angyan (EMQC)
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Experimental sources of intermolecular forces

@ crystal structure analysis
@ thermodynamical properties: heat of vaporization (Trouton's rule)
@ crystal structures

e ionic crystals
e rare gas solids

@ physico-chemical properties: bulk modulus, phonon spectrum, etc.
@ virial coefficients of real gases
@ viscosity, thermal conductivity (collision integrals)

@ spectroscopy: VRT (vibration-rotation tunneling)
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Theory vs. experiments

{Dexp} ﬁ {Dtheor}

el I n I S

Uexp Utheor

1

QUANTUM CHEMISTRY
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Crystal structure analysis

@ van de Waals radii (Pauling, Bondi)
@ anisotropy of the interactions

@ properties of the hydrogen bond
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Interacting atoms are often aspheric

Pauling and Bondi compiled nonbonded interatomic distances from crystal structures:
tables of spherical van der Waals radii.

Atom Bondi 7Tmazr  Tmin

F 1.47 1.38 1.30
Cl 1.76 1.78 1.58
Br 1.85 1.84 1.54
| 1.98 2.13 1.76
N 1.70 1.60 1.60
O 1.50 1.54 1.54
S 1.74 2.03 1.60
Se 2.00 2.15 1.70

Bondi's vdW radii and major and minor
anisotropic radii proposed by Nyburg and

Faerman.

Nyburg and Faerman, Acta Cryst. B. 41 (1985) 274
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Anisotropic Cl- - -

S.L. Price et al. , J.A.C.S. 116 (1994) 4910
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Cl contacts

Parallel distance /Angstrom

£

w

~n

Perpendicular distance /Angstrom
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Trouton's rule

@ Empirical relationship between enthalpy of vaporization, AH,.p and boiling point,
Th at atmospheric pressure

AH,p ~ 10RT, = 85) K~ 'mol ™"

@ Can be explained by the fact that the change in Gibbs free energy is zero at the
boiling point, T},
AGup =0

AHyp = ThASuap

@ Rough estimate of the entropy change by the liquid/gas volume variation:

AS.ap = RIn(Vy/Vi) ~ RIn1000 ~ 7R ~ 57 K 'mol !

@ The remaining contribution of 3R can be attributed to liquid structure.
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Well depths from Trouton's rule

The latent heat of evaporation can be approximated by the energy required to separate
the liquid to its constituents is € (zp energy neglected). The total energy for NV
molecules, each having n neighbours is

1
AH,, =~ 10RT, ~ ENA’I’LE
An estimation of of the well-depth, ¢ is given in terms of T},

€/k'B ~ 20Tb/n

Table: Pair potential well-depths from Trouton's rule

T, /K n  (20Th/n)/K  (¢/kB)/K €/kJ mol™!

He 4.2 12 7 11 0.09
Ar 87.0 12 145 142 1.18
Xe 166.0 12 277 281 2.34
CH, 1115 12 186 180-300 1.5-2.50
H,O 373.2 4 1866 2400 ~20
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lonic crystals

sodium (I) chloride

NaCl crystallizes in fcc lattice

lattice parameter a = 5.64A

ions are in (0,0,0) and (3.1.3

lattice energy U, = —764.4 kJ/mol

Cohesion energy is the sum of the Coulomb (Madelung) and repulsion energy:
Uoh =Uc +Ur

where Uc is a lattice sum of 1/r interactions, Ug is approximated by the Born-Mayer
potential.
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lonic crystals — Born-Mayer potential

Born-Mayer potential:
Uo = Q> (&) Up=Y Be "/’
j i

The lattice sum (Madelung energy) is conditionally convergent, so special techniques
(e.g. Ewald summation) are needed to evaluate them. For a NaCl lattice, the energy can
be expressed using the Madelung constant, o = 1.7476,

220 2-1.7476

Pl —1389.9 x ————kJ/mol = —861.3kJ/mol

Ue=-@Q 5.64

The repulsion energy is short-range, therefore it is sufficient to sum over the 6
first-neighbours:

Up=Y_ Be "/’ =6Be /%
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lonic crystals — parameters of the BM potential

The Born-Mayer potential has two unknown parameters, B and p.

@ Repulsion energy

Ur =UZY — Uc = —764.4 + 861.3 = 96.9kJ/mol

coh

@ Condition of equilibrium in the minimum of the lattice energy

8Ucoh _ 2205 @e—a/Zp _ _& _ Ur

da a® 2 a  2p
Effective "ion radius" is obtained from the repulsion and Madelung energies

1Ur
=—=—-a4=0.3164
P 2Uc @

@ The B parameter of the Born-Mayer potential is

_Ur 5
B = W = 1.168 - 10°kJ/mol
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lonic crystals — check the potential

The quality of this potential can be
checked by calculating the bulk modulus

82[]cch
K =
v ov?

where the volume of 1 mole NaCl is V =
Naa®/4. The volume derivative can be
calculated as lattice-parameter derivative:

(%)

Bulk modulus for the NaCl structure

0 _
v~

ov
da

9
da

K — NACL3 4 2 BzUcoh
T4 3N4a? Oa?
4 PUecon
" ONaa 0a?
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Second derivative of the cohesion energy

PUoh 0 (Q2a) 1 0Ug
da2 ~ Oa a? 2p Oa
2 1
- EUO + rszR
Theoretical bulk modulus
4 2Uc | Ur
" 9Naa a? 4?2

= 14.8016 kJ/mol/A®

Conversion to gigapascal
1 kJ/mol/A® = 1.667 GPa, i.e.

Kt — 24,57 GPa
K = 24 GPa
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Rare gas crystal

@ Ar crystallizes in fcc lattice
@ lattice parameter a = 5.3109A

@ ions are in (0,0,0) and (3,3.3)

@ lattice energy Ul = —8.4732 kJ/mol
(after zpe correction)

Cohesion energy is the sum of pair potentials
N
Ucoh = E Z ULJ(T’L‘J‘)
ij

where N = 4, number of atoms in the unit cell, and UL s is the Lennard-Jones potential:

ULs(r) = 4e [(%)12 _ (%)6}
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Rare gas crystals - lattice sums

Lattice sums can be calculated from the number of neighbours at the multiples of the
nearest-neighbour distance d = a/v/2:

shell 1 2 3 4 5 i
r d V2d 3d 2d +5d fi-d
m; 12 6 24 12 24 mi

General form of the lattice sums

shells n shells
o —n (O\" o\"™
2 m (f4) = Smid (3) =r ()
Lattice sum for the 6- and 12-potentials

i 1 5 fcc(oo)  hep (o00)
p2=Y,mifi ? 12 1213114 1213188 12.13229
pe=>,mif® 12 1401839 14.45392 14.45489

Cohesion energy of the rare-gas lattice in terms of lattice sums

=2 [ (3)" - (3)
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Rare gas crystals - fit parameters

Stability condition
OUcon o121 o\®1
ad 12p12<d) d+6p6<d) q= "0

yields the o parameter as a function of d, the nearest-neighbour distance

d= ,ﬁ/@ .o = 1.090260
Pe

Lattice constant a = 1.541860.
Cohesion energy can be expressed in the function of ¢.

Ne Deé 2 De
Ucoh = o |:p12 (E) — D6 (21)12):|

N 2
Uoh = —~ 25 ¢ — 21505 N ¢
8 p12

or:
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Rare gas crystals - structure

a = 1541860

Ucoh = —2.1525 N e

Lattice parameters (in A) and cohesion energies (in uH) from "monomer" Lennard-Jones

potentials:

‘ ‘ Te D. ‘ g ‘ Qcalc Ucalc ‘ Qexp Uexp
Ne | 3.091 133.8 | 2.75 | 425 1152 | 435 1002
Ar | 3.757 4535 | 335 | 5.16 3904 | 5.23 3268
Kr | 4008 637.1 | 3.57 | 5,51 5485 | 5.61 4502
Xe | 4363 8939 | 3.89 | 599 7696 | 6.10 6239

The cohesion energy error is increasing: large cooperative effects.

J. Angyan (EMQC)

35 / 201



Deviations from the ideal gas
Equation of state for an ideal gas (noninteracting point masses)
PV =RT

where P is the pressure, V is molar volume, and R = 8.31J K ' mol~! is the gas
constant.

The standard molar volume V',
(1 atm, T=273.15 K°) of real
gases are different from the
ideal value (22414 cm?).
He: 22377 cm®
CH,: 22396 cm®
NHs: 22094 cm?®

Considerable deviations can be
 WMithane 2 iopentane observed in the behaviour of

0.6

0.4

& Ethane e n-Heptane
o2l o Ethylene 1 Dioxydle de carbone the compression factor,
TR4.00 PV
- %= ®r-
TR T
Pr
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van der Waals equation of state

The van der Waals equation of state accounts for these deviations by introducing two

empirical constants, a and b

(P—l—%) (V —b) = RT

@ excluded volume in a binary collision 7o
2 3
b= §7rNAU

@ reduction of pressure due to intermolecular attraction: the number of binary
. L . . 72
interactions is proportional to the square of the density, (a/V")

J. Angyan (EMQC) IMF
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van der Waals equation of state

Rearrange as

PV_ V. _ _a
RT  V—b RIV
expanded in the reciprocal volume
PV b-wRT BB
RT - V Vz =3

@ repulsive interactions raise the pressure

@ attractive forces reduce the pressure

@ at low T attraction (a), at high T or high pressure repulsion (b) dominates

the constants a and b can be obtained from critical parameters P., V. and 1., where

(0P/OV)r and 8?P/OV?)r are both zero:

a= gRTcVC =3P.V?

J. Angyan (EMQC)

1
b—gvc
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Virial equation of state

Virial equation of state — power series of (1/V')

where the second virial coefficient depends on the pair interactions

Byo(T) = —2xN / (e "M/KT _1)R*dR
0

The pair potential u(R) can be obtained by "inversion": mapping measured B»(T')
points to u(R) — without a priori assumptions.

J. Angyan (EMQC) IMF
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Equations of state - generalities

The total energy is a function of x, external parameters
E = E(z1,%2,...Ty)

Define generalized forces corresponding to external parameters

- OE
Xa— %

In statistical mechanics the equations of state describe the relationship of the external

parameters, the generalized forces and the temperature:

- dlnZ
Xo =kT
0T

where Z is the partition function. For the special case of volume (zo = V') and pressure
(Xa = P)

= dlnZ
P=kT
ov
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The semi-classical partition function

1 - D D- ~ = = —
Z = W///e (K+U)KT B B35, .. PPN Ad* 7 . .. &7y

is a product of two terms, depending on the kinetic and the potential energy,

respectively:
1 2
2 Z Ui

N|h3N // /—K/de3 3. de// /—U/de3 . Py

(2rmkT)3N/? Zu
Partition function
g L (2mmkT\??
SN\ ) o
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Equations of state - ideal gas

For an ideal gas u;; — 0 (or if T' is high kT' — 00)
er/kT — 1 ZU = VN

and the corresponding partition function

1 3 3 2mm
InZid—Inm—i—N InV—I—EInkT—i—EIn( 2 >]

Equation of state for an ideal gas

8InZid NEKT
P=kKT = —
ov \%
or
PV = NkT
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Equations of state - real gas

For a real gas with low number density (n = N/V small) an approximate expression can
be obtained for the configurational partition function.
Take the average potential energy with 3 = 1/kT, which satisfies the following
relationship
—  [[fUe Y @rdPr, ... Py )
U = 30U 5 5 S =——1n ZU
If[ e BU BF d37, . .. d3FN B

The logarithm of the partition function is

B__
In ZU(,@)lenV—/ U(B')ds’
0

In a low-density system the U, the average potential energy of 1/2N (N — 1) molecule
pairs is equal N2 /2-fold of the average potential energy of an arbitrary pair of molecules:

1 1

U=-N(N-1u=~ -N%qu
U 3 ( )u SV
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The average potential energy of a pair of molecules

—Bu(R) 3D
ﬂ:fu(R)e R _ aln .

_9 -Bu(R) 3 3
[e PR BR B f

Since u(R) = 0 almost everywhere, excepted the small distances, it is worthwhile to
transform the integral as

/ e PR = / [14+ (e 1)) @E=V +1(8)

—Bu(R)

The quantity in parentheses is the Mayer-function f(R) =e — 1, and its integral

over the intermolecular separation, R is

1(B) = 4 /0 b (e77™ - 1) RdR
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Calculate the average potential energy for a pair of molecules

= %ln[VH(ﬂ)] aﬁ['”v“( @)}% L 91(8)

which is substituted in the expression of the configurational partition function

vV o

In Zu(3) = NInV+ff[I(0) 1(B)]

The equation of state is

P 0nZ 9lnZ N 1N?

oy o, — v 2vel?

or

ﬂ_ PV -1 47 N oo(e—ﬁu(R
RT = NkT 2V

) 1) R%dR
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This is the first term of the virial equation of state:

_ _1+ZBn+1

and the virial coefficient is

By(T) = —2rN / (e_“(R)/ M 1) R*dR
0
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Temperature dependence of the virial coefficient
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Temperature dependence of the virial coefficient

B(T)

() 2

nn

|
= >
T —
~

T

f(R) _ e—u(R)/k:T 1
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Third virial coefficients

B3(T) = B3 + AB3

For a strictly additive potential
add N, 3
B3 = — §87r f12 f13 foari2 113 T2z dri2 driz drras

The non-additivity correction depends on the 3-body potential AUz

AB3; = g&rs /// (e_AU3/kT - 1) e VM 1y 113 1as diri dirys dras

For rare gases ABs is up to 50% of the third virial coefficient!

J. Angyan (EMQC) IMF
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VRT spectroscopy

Acceptor Switching Tunnelin
Az
Interchange Tunnelin

o o “o;j%_,%_oc%

—eap—%:’o&v-a%a—@\w

Bifurcation Tunneling

= E% Acceptor Interchange _, Bifurcation
% D@\aﬁ %369_‘({_) @_G\g |J=0, K=0; — 5‘“'|Cm”9 - Tunnelingé “ Tunneling

Tunneling

Calculated splitting due to tunneling is very sensitive to the height and shape of the
barrier — stringent test of the PES.
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Experimental vs. calculated VRT splittings with different water-water potentials. None
of the 14 potentials was found to be fully satisfactory.

Fellers, Braly, Saykally, Leforestier, J. Chem. Phys. 110 (1999) 6306
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Further experimental techniques

@ transport properties of gases: thermal conductivity, diffusion coefficient, viscosity

@ lattice vibrations (phonon dispersion)

@ liquid structure: atom-atom pair distribution functions from X-ray and N scattering,
diffusion coefficient (velocity autocorrelation function)

@ rotational fine structure of vibrational spectra

@ molecular beam experiments: scattering cross sections

@ etc....
Further reading: Rigby, Smith, Wakeham, Maitland: The forces between molecules,
Clarendon Press, Oxford (1986).
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Match theory vs. experiment: advantage theory...

VOLUME 74, NUMBER 9 PHYSICAL REVIEW LETTERS 27 FEBRUARY 1995

Ab Initio Calculations for Helium: A Standard for Transport Property Measurements

Ronald A. Aziz and Alec R. Janzen
Department of Physics, University of Warerloo, Waterloo, Ontario N2L 3G 1, Canada

Michael R. Moldover

Thermophysics Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899
(Received 29 September 1994)

For helium, the accuracy of caleulated transport properties and virial coefficients based on an accurate
ab initio potential now exceeds that of the best measurements. The ab initio results should be used o
calibrate measuring apparatus.
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Part 1l

Long range electrostatic interaction
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Poisson’s equation

Force between two point charges

/
q4q ’
F=——"——(r—r
|r — 'r’|3( )
and the electric field is the force acting on
a unit charge in interaction with ¢’ placed
at the origin:

/

q9
E(r)= |T|3r

Using the superposition law, the electric
field of a continuous charge distribution

E(r)= /dr 7,|3(r—7‘)

Take the divergence of both sides and use

J. Angyan (EMQC)

)

m = 471'5("" — 7'/)

therefore

V.-E(r)= 47T/dr'6(7' —7r)p(r")
=47 p(r)

Since the field is the negative gradient of
the potential:

E(r)=-V-V(r)
one gets Poisson's equation
V2V (r) = —4x p(r)

The electrostatic potential is

V(r) :/dr' p(r)

=]
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Taylor expansion of the electrostatic potential

Potential V(R) of the charge distribution o(7)

R V(R) = /dr \Ig(i)rl

:/drT(R—r)Q(r)

r can be expanded in Taylor series around » = 0
(Ir] < |RJ).

Taylor expansion in Cartesian coordinates of the Coulomb interaction function

TR-r)=—5— = Z raVa (—) o ZZ rar3VaVs (R)
- ﬁ ;;; oty VaVaVy (E) T

Attention to alternating signs!

J. Angyan (EMQC) IMF
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Expanded electrostatic potential

Taylor expansion in the electrostatic potential expression
V(R) = T(R)/drg )~ T (R)/dmg Nty ZZ o R)/dmm
1
3 Z ZZTQM(R)/ drrargryo(r) + ...
a B~

Multipole moments Cartesian interaction tensors

1
0= [ dretr) TR =7 1
me = /drrag(r) Ta(R) = Va (R)
1
Qap = /drrarﬂg('r') Tap(R) =VaVp (E)
1

Oaﬂﬁ/ = /d'r‘rargr»yg('r) TQQW(R) = vavﬂv'Y <E)
'fozﬁ,..y = /drr((:ﬂ)myg(r) TQEU(R) = vavﬂ ..V (%)
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Tensor notation

@ generalization of the notion of scalar, vector and matrix
@ its rank is the number of indices

e rank O: scalar e.g. charge ¢

e rank 1: vector e.g. dipole po = {pa, fiy, p=}
rank 2: matrix e.g. quadrupole ©,3

e rank 3: e.g octupole Q.3

its dimension is the range of the indices (e.g. 3-dimensional)

Kronecker delta is defined as

50— 1, ifa=0;
=0, ifa#p.

Einstein summation convention over repeated indices:

Aca = Asa + Ayy + A.. =TrA trace
taVa = pa Ve + 1y Vy + 2V contraction
daa = Oaz + Oyy +9.. =3 (not equal to 1)
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Electrostatic potential, field, field gradient...

Using the tensor notation the potential is simply

V(R) = qT(R) — maTa(R) + %QaﬁTaﬁ(R) R %ga,@_,_yTwmy(R)

The electric field is the negative gradient of the potential:
F.(R) = —-V.V(R)
Since VaTpy...(R) = Tapy....(R) — the rank of interaction tensor is increased,
1
Fy(R) = ~qT(R) + maTun(R) — 5 QasTas(R) + ...

It is "easy" to obtain higher derivatives: just add another suffix to the interaction
tensors. Field gradient:

1
Fye(R) = —qTye(R) + maTore(R) = 5QapTapye(R) + ...
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Let us look at in more details the expansion of the electrostatic potential
i
(R)=) &
2 [
Expand in Taylor series as

V(R) = Z qi

e ()b ()
— +7r; = Pia Ty _—
R "\ O, |R — 7] Pia=0 2 K OriaOrig |R — 74| 0

Change derivative w.r.t. 7o to Ra (change of sign!):

V(R) = Z i

—_ T — —_— — Tie Ty _—
R\ ORa|R—7il),, _o 2 ' " \ORaORs [R—7i/), _,
Set i =0

1 1 1 1 1 1
V(R) = Z qZ{E — Tia VQE + 57'1'& i3 VanE — a'r’ia Tig 'I‘WVQV@V»YE +.. }

i

1 1
=qT —maTo + 5 QaﬁTaﬁ - 5 Oaﬁ'yTaﬂ'y
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Calculation of cartesian interaction tensors
They are defined as

T:l:R*I:;
R VR + R+ R2

Use the following derivation rules:

VoRs =00s  VaR"=nR.R"?  V,R"™=-nR,R "

@ First order
To(R) = VoT(R) = —RoR ™

@ Second order
Tup(R) = VoVsT(R) = ~VaRsR > = —643R > 4+ 3R, RsR™°
= (3RaRs — R*0up)R®
@ Third order
Tapy(R) = VaVsVT(R) = 6a(3Rs Ry — R?65,)R ™"
=300sR R ° + 300y RsR ° 4+ 30s,RaR° +3-5- RaRsR, R’
-3 (511::041!2;,1{V — R?(Rabsy + Rgbya + Rvéaﬁ)) R
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Properties of cartesian interaction tensors

@ Symmetric w.r.t. permutation of indices — order of differentiation does not matter

Tapy = Tpay = Tprya = - -

Contraction of any pairs of indices gives zero:

Taﬁnﬂ.‘.u -

For instance, at second order:

Tuo = (3RaRa — R*60a)R° = (BR* - R’3)R°=0

(1/R) satisfies the Laplace equation:

\Y

e
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Traced Cartesian multipole moments

There are several conventions in the literature to define multipole moments.
The previously defined traced cartesian multipole moments

(n)  _ (n)
§o¢ﬁml/ - /drraﬁmug(r)
are symmetric tensors .3 = 3o and their trace is nonzero

faa =) €aa #0

They are called unnormalized traced Cartesian multipoles.
The unabridged multipoles of Applequist differ from them by a normalization factor:

m 1w

iu’aB...V - nl apfB...v
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Meaning of the trace

@ Spatial extent

140

o b i b NG The trace of the second moment of a
2 : e . . . .
o N AN {J charge distribution is used to
5 @ o characterize its spatial extent, (>°, 77)

A
\
W ‘ \;J ¥
2 ;
i
0 10 20 30 40 S50 60 70 80 90 100
z

(a kind of scalar moment of inertia for
the electrons).

@ The full charge density can be reconstructed from traced multipoles. Consider the
Fourier transform of o(r)

olk) = / dre™” o(r)

and expand the exponential

o(k) = /drg(r)—l—ik:a/drra g(r)—%kakﬂ/drrarg o(r)+ ...
S — | ' |
q

me Qap
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Traceless Cartesian multipoles (Buckingham)

Potential of the second moment
1
D(R) = 5QasTus(R)
Since the T(R) = & function satisfies the Laplace equation
2 1Y _
v (1) =
SV () = S Tuam) =0

we can add to the quadrupole potential an arbitrary quantity

AdapTap(R)
without changing its value
1
VO(R) = 2 (Qus + Map) Tus(R)
J. Angyan (EMQC) IMF
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Let us choose A such as the trace of Qag
1 1 2
/\:_gQaa:_g ga Qaa:T

The new expression of the quadrupole potential

vom =11 / dr (3rars — 1%6us ) o(r)Tus(R)
1
= 39asTas(R)

in terms of the traceless cartesian quadrupole moment

Onp = %/d’r (3ra7‘g - rzéag) o(r)
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Traceless (Buckingham) multipole moments

General definition

(n) _(_)n/ 2n+lL 1
M"‘B""’_ n! dro(r)r ora0...7, \'r

Electrostatic potential

R) Z (2 1)” aﬁ VTaﬂ I./(R)
where the notation (2n — 1)!! means

(2n-1)1=1-3-5-...(2n—1)

The traceless multipoles do not contain the full information about the o(r) charge
distribution, since they are undetermined up to an arbitrary spherically symmetric

component.
Example of quadrupole:

Mc(yﬁ) ; /d'T'Q(’I”) ’f's (3Ta7"5 — 6aﬁ7"2)7"_5 — eaﬁ

J. Angyan (EMQC) IMF
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Dipole moments

Typical values of dipole moments

D au. 10 Cm
H20 1.85 0.728 6.17
H2S 0.98 0.386 3.27
HF 1.91 0.751 6.37
HCI 1.08 0.425 3.60
HBr 0.80 0.315 2.67
HI 0.42 0.165 1.40
cO 0.12 0.047 0.40
NH3 1.47 0.578 4.90
PH3 0.58 0.228 1.93
AsH3 0.20 0.079 0.67
NaCl 9.00 3.541 30.02
H2CO 2.33 0.917 7.77
CH3CN 3.091 1.538 13.04

J. Angyan (EMQC)

@ Traditional unit is Debye:
1D=10"" es.u.

@ Sl units are impractical
1D =3.33564x10"°Cm
1Cm = 0.29979%x10%° D
1Cm=0.11795x10"% a.u.

@ Atomic units are convenient:
1au =254177 D
1a.u. =8.47836x107 Cm
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Quantum chemical calculation of dipole moments

@ Good basis set with polarization function needed

@ Hartree-Fock overestimates dipole moments

@ Correlated methods are recommended

@ DFT methods are usually not too bad

Mol HF/POL MP2/POL BLYP/POL B3LYP/cc-pVTZ B3LYP/POL exp.

CO -0.25 0.31 0.19 0.13 0.10 0.12

H,O 1.98 1.85 1.80 1.92 1.86 1.85

H,S 1.11 1.03 0.97 1.19 1.01 0.98

HF 1.92 1.80 1.75 1.83 1.80 1.83

HCI 1.21 1.14 1.08 1.21 1.12 1.11

NH3 1.62 1.52 1.48 1.59 1.52 1.47

PH;3 0.71 0.62 0.59 0.53 0.62 0.58

SO, 1.99 1.54 1.57 2.01 1.67 1.63
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Quadrupole moments

@ Quadrupole moment is a second-order tensor: matrix
1 3wz — 2 3x:ys 3xi2;
0= 5 Z qi 3xy; 3yiy — 2 3yizi
i 3ziz; 3yizi 3zizi — rf

@ tensor notations:

1
Oup = > ZQi (37"ia7"iﬁ - T§5aﬁ)

@ Symmetrical
@ Traceless

@ Has the dimensions of [charge] x [length]?, so the atomic units are
ea? =4.49 x 107%° C m
Other units: Buckinghams (B) 1 B = 1 DA= 107% es.u.
1 a.u. =1.3450x10"*° es.u. = 4.487x10* C m?
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Estimation of quadrupole moments

The traceless quadrupole moment tensor has five independent components:
(] eaﬁ = eﬁa
@ Trace is zero: ©,o =0

@ Independent components: ©..,0,, — ©yy, 04y, Oy, Oy

For systems with axial symmetry,
O4: — Oy = 0 and we have

Z qi(327 — 1)

2
Zi
E qi 7‘3(3§ - 1)

Z qir? (3cos 0> — 1)

ezz =

NI~ NIR N+~

Angular function 1/2(3cos#? — 1) > 0 near the z-axis (6 < 54.736° or § > 125.264°) so
positive charge in these regions contribute positively, while positive charge near the xy
plane (54.736° < 6 < 125.264°) contribute negatively.
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Quadrupole moments

BX3

Negatively charged X(=F,Cl) atoms in the
xy plane lead to a positive quadrupole
moment: BF3 ~ 2.5 a.u.; BCl3 ~ 1.5 a.u.
(Theory: 3.0 a.u. and 0.8 a.u.)

Negatively charged O atoms on the z axis
lead to negative quadrupole moment of
-3.3 a.u.
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Some experimental quadrupole moments

Molecule DA a.u. 107%Cm?
H, +0.6 +0.45 +2.1
N, -1.4 -1.04 -4.9
HCI +3.8 +42.83 +12.3
co 2.5 -1.86 -8.2
benzene -8.5 -6.32 -29.7
CeFs +9.5 +7.06 +31.7
ethane -0.8 -0.59 2.7
C3Hs +1.6 +1.19 +5.3
NH; -2.3 -1.71 1.7

J. Angyan (EMQC)

Water (zz plane —z axis to O )

+2.63 0 0
0= 0 —2.50 0
0 0 -0.13

H>C=CH; (yz plane z axis along C=C)

—3.25 0 0
0= 0 +1.62 0
0 0 +1.62
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Change of origin: dipole moments

@ Dipole moment of a point charge distribution

Mo = Z qiTia

i

In a new frame obtained after a translation by a vector R

po =3 Gi(ria = Ra) = D e = Ra 3 i = fio ~ Ratior

@ Dipole of a neutral system (gt = 0) is invariant to translation of origin.

@ Dipole moment of a charged system can always be set zero if the origin is at the
center of charge (barycenter).
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Change of origin: quadrupole moment

@ Change of origin; 7 =r — R
1
O = 5 (3(r = R)a(r — R)s — |r — R[*das)

3 3 1
= Oap = 5 Rapy = SRspa + 1+ Riap + 59(3Ra Ry — R%*6.5)

@ In general, it is not possible to find a center of dipole (5 quadrupole components to
be annihilated, only 3 translational degrees of freedom)

@ For molecules with 3-fold (or higher) axis of symmetry ©.. = —20,, = —20,,
and only 1 nonzero dipole (p-):

©,,=0..—2R.u.

thus R. = 1©..u; " is the center of dipole
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Change of origin: quadrupole moment

Quadrupole relative to the center of mass Quadrupole relative to the H atom

Hydrogen fluoride molecule
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Electrostatic energy

Work to assemble a set of point
charges q; at r; is

= %Z%V(”)

Generalized for continuous charge
distributions

U= %/dr@(r) V(r)

Using the expression of the potential

we obtain the total electrostatic energy

/ drdr /Q")Q(T)

7|
Shorthand notation

1

U= QT Or’ Trr’

J. Angyan (EMQC)

IMF

The charge distribution is partitioned
to two (or more) pieces:

A
or = 07 +or

Total electrostatic energy splits on
several contributions:

1
U=3 (02 + o2) (o + 02) Ty

splits to a self-energy contribution

1 1
USElf :5 Q?Q’?/ Trr’ + E Q?Q?/ T,,..,./

and an interaction energy
A B
Uint = Or O/ Trr/

We are interested in the electrostatic
interaction energy
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Electrostatic interaction energy

Electrostatic interaction energy of two charge distributions is the interaction of one
charge distribution with the potential of the other.

U://drdr’%

We know how to calculate the potential created by a charge distribution;
what is the energy of o(r) in an external potential?
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Charge distribution in an external potential

Choose the origin inside the charge distribution, o(r) and expand the external potential
in Taylor series around the origin

V(r) = V(0) + raVa(0) + ~

1
517a78Vas(0) + 17arsr Vagy (0) + ...

3!

From the expression of the interaction energy
U= /er(T)V(r) = /drg(r)V(O)+/dr9(r)rOVa(0)

1 1
+ f/ dro(r)rarsVas(0) + g/dTQ(T)TQTﬁT—yVaﬁry(O) +...

where one recognizes the unnormalized traced multipoles,

1 1
U = EV + gova + Egaﬁvaﬂ + ggali’yvaﬁ'y + ...
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Interaction with external potential

By the virtue of the Laplace equation, Vo = 0, the trace of {ng = Qag, i.e. %Qaa can
be subtracted from the quadrupolar energy

1 1
EQQBVGB = EVaB(QaB aB3Qaa) aﬂeaﬁ

By similar manipulations at higher orders one obtains the interaction energy in terms of
traceless Buckingham multipole moments

U= qV + ,U«ava + = eaﬁvocﬁ + Qaﬁ'yvaﬁ'y
1 1
——DapysVa 7M(")
+357 ﬁ’y&Vﬁ’y&‘i’( 1)” V

The energy is the scalar product of the field with dipole, field gradient with quadrupole
and higher field gradients with the corresponding multipole tensors.

Attention: the result may depend on the choice of origin!
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Multipoles in field, field gradient

Dipole/field interaction Quadrupole/field-gradient interaction

Z _

1
U=Fpiz + Fyuy <0 U= ngyezy >0

J. Angyan (EMQC)



Multipole-multipole interaction energy

Take two sets of multipoles. Double Taylor series of the Coulomb interaction

1 1 1
|T—T’|_|B+S—A—’r‘| |R—(r—s)|

=+ (ra = 5a)Va (%) + 510 = 5a)(rs — 58) VeV (%) +.

which leads directly to an expression of the interaction energy of two multipole charge
distributions in terms of their traced Cartesian moments

U(R) = ¢"¢" T(R) + (m&q” — ¢"ma) Ta(R)
1
+ E(QﬁﬂqB +¢"Qas —mams —mims) Tap(R) + ...
Using the traceless (Buckingham) moments

£1)[A £1+4 £7)[B
-% @i A M T L (RN,
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Multipole interactions - general remarks

Multipole-multipole interactions with traceless moments:

U=qATqB+uaAT q" —q* Ta ua
eagTan +

1 1 4 A 1,4
+z 15 Taﬁ'y Qaﬁv ISQO‘B’Y Top~y qB - gﬂa Topy @537 + geﬂ'y Topy HE

— & Top ps + 5 q A Tg eaa

3 3

+ §ea5 Taga,a 955 + ...

The interaction between multipoles of rank [n4] and rank [ng] is:

U = MMalpynel  p=ma=nme=1 o angular factor
Strongly orientation dependent

Electrostatic energy can be truncated either by the highest rank of multipole (e.g. up to
©-0) or by the highest rank of the interaction tensor (e.g. up to R™°, including ¢-®
interactions).
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Summary of multipole-multipole interactions

®
®

@0 -0

J. Angyan (EMQC)

000 10

Charge - Charge

Charge - Dipole

Dipole - Dipole

Charge - Quadrupole

Dipole - Quadrupole

Quadrupole - Quadrupole

R

R—Z

R3

R3

RS
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Dipole-dipole interaction

Dipole-dipole interaction energy z
A
UM’« = —Ha Ta,(j /J’g 9B
A3RaRs — R*uap B
= —Ha RS 2253 B\§ (pB

_pt -3t R) (W R)
— =

A convenient setting of the coordinates is the z
axis along the intermolecular vector from A to
B. The dipoles are specified by their polar
angles.

0 sinf 4 cos sinfp cos¢p
R= 0 , ,u,A:;LA sinf 4 sin ¢4 uB:uB sinfpsingp
R

cosf 4 cosfp

J. Angyan (EMQC) IMF 85 / 201



Dipole-dipole interaction

The dipole-dipole interaction energy becomes Z
A B 9B
Upp = —% (2cosfa cosfp — sinf.asin O cos @)
R B Le
with ¢ = ¢ — Pa

The most favorable orientation at a given distance R is
04 = 0p = 0, where the interaction energy is
—2u*u”/R?.

Another favorable orientation is 04 = 0 = 7/2,¢ = 7,
with the interaction energy —uAuB/R3

55°
< —
— —
-2 +2 -1 +1 0
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Dipole-quadrupole interaction

Dipole-quadrupole interaction energy of two linear molecules:

AQB
U 3”0

ey (2sin 64 sinfp cos i cos ¢ — cosfa(3cos’ Op — 1))

Some of the special configurations:

I
w
o}
w

[

Nlw
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Quadrupole-quadrupole interaction

Quadrupole-quadrupole interaction energy between two symmetric top molecules.
non-zero quadrupole moment components are ©., = © and ©,; = Oy, = —%@

AQB
Uso = % [1—5cos’ 04 — 5cos’ 05 — 15cos’ 04 cos’ O

+ 2(4cos 0 cosOp — sin 04 sinOp cos d))z]

The most favorable structures are the T-shaped and slipped parallel. Both of these occur
sometimes in the same crystal structures of quadrupolar molecules (e.g. N, CO,
benzene).

Slipped
T parallel
45°
- - ®
1 > >
+6 -3 2% +1 —2L
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Interaction of two HX molecules

Competition of three multipolar interactions. Angular dependence for linear molecules

(symmetric tops) is the following:

@ dipole-dipole

p AP
Upp = — jr8 (2cosBa cosOp — sinfasinfp cosp)
@ dipole-quadrupole
3}LA B 2 . .
Use = 1R [cos0a(3cos” O — 1) —sinB4 sin 20 cos @]

@ quadrupole-quadrupole

04e%3
Ueo = 13

+2(4cos 0 cosfp — sinf4sinfp cos p)’]

[1—5cos’0a —5cos’ O — 15cos” 04 cos’ O

J. Angyan (EMQC) IMF
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The structure is characterized by 04 ~ 0 and ¢ =0, p* = 4% = and ©4 = 0% = ©.
The sum of the 4 interaction terms (two for U,e)

U:—’u—~2c059

"3
+ /;%7? . ;[(3c0529 — 1) — 2cosb)]
-+ %z -3(3cos’ 0 — 1)

Introduce the parameter \ = ,?R

2
U= %{—2&50—1— ’\%[(3(:0520 —1) —2cosf] + A\*3(3cos’ 0 — 1)}

2
= 2“—}23{3,\(1 +2)0)(3cos? 0 — 1) — 2(2 + 3X) cos 6}
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8.885 T T T T T

Electrostatic interaction energy
is plotted for the

@ HF dimer
u = 0.72eao,
oees L © = 1.875eaj
' R =5.1ao;
minimum at 68 degrees
(exp. 60)
R @ HCI dimer
w = 0.433eay,
© = 2.8eal
-8.0815 [ R = 6.8ayo;

minimum at 79 degrees

PR T SR S N S N B
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Legendre expansion of the potential

The distance |R — 7| can be expressed
with the help of the cosine rule

(R—7)-(R—7)= R*+r®—2Rrcosy

The Coulomb interaction T(R—r)=1/|R—7| can be written in two alternative forms
~1/2
+ [1+ (%)2—2(§) cosv] if r<R,
T(R—7)=

—-1/2

1 [1—1—(%)2—2(%)@57] if r>R.
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The expression in brackets is just the generator function of the Legendre polynomials
(1+ % —2tcosy) V2 = ZPl(cosv)t [t] <1

The first few Legendre polynomials

Po(z) =1
Pi(z) ==
Pye) = 2(3° ~ 1)
Py(z) = %(5:63 ~32)
Py(z) = %(35;54 —302% + 3)

and at an arbitrary order they can be obtained from the recurrence relation

(20 + 1)zP, = (14 1)Piys + 1P,
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Depending on the space domains, either the first (r < R), or the second (R < r) form of
the generator function can be applied:

> er—lﬂPl(cos'y) if <R
T(R—7)=
S P(cosy) if r>R

The formulae for the two domains of space (r < R,r > R) are usually expressed in the
following condensed form

oo

1
T

T(R—r)= Z T<1Pl(c05fy)
=0 >

The lowest-order terms explicitly for r = |r| < |R)|

1 _l+r~R+3(r-R)2—r2R2+5(r-R)3—3('r-R)r2R2+
IR—r] R R? 2R5 2R7

where we used that r R cosy =7 - R
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Exercises

@ Find the 4th order term of the Legendre expansion of 1/|R — 7| in the above form
(i.e. using scalar products of the vectors r and R).

@ Derive the Legendre expansion in the above form up to 4th order making use of the
series expansion
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Spherical harmonic expansion

Addition theorem of spherical harmonics

Pi(eos) = <2l+1> Z Yim ()i (2)

where w = (6, ¢) and Q = (©, ®) are the angular components of the polar coordinates of
r and R, respectively.
The (complex) spherical harmonics for m > 0

i) = (" (25 () " Py (cos6) exp(imo)

and for m <0

Yim(w) = (=)"Yim (@)
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Here we used the associated Legendre polynomials, that are defined for m > 0 through
the derivatives of P,(x) as

Pon() = (1 — 22)™2 (%) " P(a)

Pyo(cosf) =1
Pyo(cos8) = cos b
Pi1(cosf) =sinf

Pyo(cos ) = %(3 cos’ 0 — 1)
Pr(cos ) = 3sinf cos 0
Px(cosf) = 3sin* 6

Finally, we obtain the spherical harmonics form of the interaction kernel

T(r - )= (5 )ZZ Hlnm(wmm(m

=0 mffl
J. Angyan (EMQC) IMF 97 / 201




Potential outside of the charge distribution

If the charge distribution () vanishes in the points R where we want to calculate the
potential, the condition r < R is always satisfied

VR =3 3 (5 i@ [ oret)

Define the modified spherical harmonics

Con@) = (5 )1/2nm(w>

2l+1
as well as the regular, Ren(r), and irregular, o, (), spherical harmonics

Rim (1) = r* Com(w) I (7) = 77 Cm (W)
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Using these functions, in terms of complex spherical harmonics multipole moments, Q¢

Qom = / dr Ry (1) (r)

the potential becomes

VIR) =3 3 (4) " Iom(R) / B (r)o(r) = 5 3 (=)™ Lo (R)Qran

=0 m=—

It is more practical to use real spherical harmonics instead the complex ones
1 m
Qeme = 5 [(_) Qem + Qém]
1 m
Qems = 5 [(_) Qem — Qem]
The absolute value of the multipole moment

£
Q= QunQin=>_ Qh

m=—~{
This quantity is invariant with respect to the orientation of the frame.
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Transformation of spherical and cartesian moments

Relationship of the real spherical harmonics and Cartesian multipole moments

Qémc/s ¢(1n)v Mgﬂ)u
Qoo q q
QIO my Mz
Q11c Mg Ha
Qlls my [y
QZO %(2sz - sz - ny) ezz
Q21c \/ngz \/7@zz
Q2ls \/ngz \/7@3!;
Q22c ?(sz - ny) % Owa — eyy)
Q22s \/§me \/gemy
IMF 100 / 201
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Spherical harmonics expansion of the interaction

One can obtain the bipolar expansion by applying the previously derived result for
lrs —ral <|R|

Brre vl - =3 S O Rl ) n(B)

1=0 m=—1

According to the addition theorem of regular spherical harmonics

1/2
le(TB-i‘TA):Z Z 51A+IB,1(—)l_m<((2l¢> %

| |
A 2lA).(2lB).
m m lama\TA Igpmp\TB

where (lA I l) a Wigner 3j coefficient.
ma mB m
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Use that Ry (—7) = (=)' Rim(r), and the multipole expansion of the interaction energy

becomes

(204 + 25 + 1)1\
Zm;m < L2l ) 8

o la I la+ls
ma mp m

) QiAAmAQl';mBIlA+lB’m(R)

The multipole moments are expressed in a global coordinate system.
Transform the multipoles to a local coordinate system

Qi = Z Qim Dini ()

where Q = («, 3, 7) is the rotation that takes the global axes to the local ones, and
D!, .(Q) are the elements of the (hermitian) Wigner rotation matrices.Inversely, the
global multipole components can be written in terms of the local ones
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Insert the local-frame multipole moments and define a new orientation-dependent
function

Ghak daipi|fta s 3\
Siiy =i J[(O 0 0>] x

<D Dy QAN Dy ()] Cim (0, 0) (m L lA+lB)

A Mp m
mampm

where 0, ¢ are the polar angles of the intermolecular vector. In terms of these functions
and expanding the Wigner 35 symbols one obtains

la+1B gmam e —ln—
S X (M) Q@ S R

lalp mampm

or after transformation to real components

la+1B KAk —la—ip—1
Z Z ( >QlA)£AQlBKBSlAAlB?A+lBR ame

lalp kakpm
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One can define the spherical analogue of the interaction tensors

T _ (la+1BY\ zrirs R-lu—la-1
lik,loky = Ia l1lpl1+1n

and the electrostatic interaction energy (operator) takes the simple form
%A ~ S AmAB 4B
U= Z Z QZAKAQ—’ZAHAJBKBQZBKB :ZQt Ttu Qu
lalp kakBpm tu

with ¢, u = {lx}.
The T tensors can be expressed in terms of the unit vectors of the respective local
coordinate systems, and the vector R.
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Interaction tensors between local frames

Following the derivation of Hattig and HeB (Mol.Phys. 81 (1994) 813), the interaction

energy in space-fixed frame
U= //de QSF QSFl( s)
—r

Let us write the rotation matrices from the space-fixed (global) to the molecule-fixed
(local) frame as R(Q.4) and R(Qp), where Q = (a, 3,7) are the Euler angles, and the
coordinates

T:A+}A?,(QA)1"A and s:B+}AE(QB)rB

Use the notation R = B — A and that the length of a vector does not change by rotation

s — 7| = |R+ R(Qp)rs — R(Qa)ral = |[R(Qa)R + R 1 (Q)R(Q5)rs — ral
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Electrostatic energy in molecule-fixed charge distributions

U = //dTAdrB ~ QQFETA)QGF(TB) —
|R*1(QA)R + R*I(QA)R(QB)T'B — T’A|

= ZZQﬁ"I : /dTBIllnl(pt_l(QA)R—F R_l(QA)R(QB)’I'B) . QGF(TB)
U1 1

The irregular spherical harmonics can be expanded in Taylor series
Iney(R3'R+ Ry Rprp) =

0o 1 aia a
= Z l?I(RAlRBTB ) VRZIR)ZZ 'Ill'ﬂ(RAlR) =

=0
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and in terms of spherical tensors as
I (R'R+ Ry Rprp) =

Z Z Rlzm (TB) Rlzﬁz( ﬁgglR) ’ Il1ﬁ1(Rle)
Using the identity I;.(R) = (=)' Ri<(V)(1/R), the interaction energy becomes

U= ZZZZQHM lenz ﬂf’ﬁlzﬂz

k1 ly K2

. AB . .
with Tj720,, ., interaction tensor

O 1 - v L
1K1l2I€2(R QA QB) - (2l1 _ 1)“ : (2l2 _ 1)!!RZZKIZ(RBIVR)RHNI(RAlvR)R
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The rotated internuclear vector and the rotated differential operators can be expressed in
terms of direction cosines and the internuclear distance R. The rotation matrices can be
written in terms of the unit vectors of the molecule fixed frame in the space-fixed system

Ra= (egcA)7 eglA), e(zA)) and Rp = (ech), egB), eg,B))

the intermolecular unit vector, eap = R/R and the direction cosines, r4 = e eas

and

(B) .

A
Ca[}:eﬁ ( ).

€

For instance

1 2 _
Tgo’oo 5(37“3 —1)R 3

Tias = (3rarh + cap)R™>

Computation of the general expressions in both cartesian and spherical tensors are quite
costly and scale as L°, where L is the order of 1/R expansion. Using an intermediate
coordinate transformation, Hattig derived general recurrence relations, which scale as L*
(CPL, 260(1996)341).
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Part IV

Induction energy
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Electrostatic interaction Hamiltonian

Place a molecule in an external electrostatic field. The interaction Hamiltonian is

V= Z qV(rk) with q=e, 7
k
Let us define the operator of the total charge density
o(r) = Z Zab(r — Ro) — Z 5(r —ri)
permitting to express the interaction Hamiltonian in the compact form as

- /dr o(r) V(r)
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Molecule in a uniform electric field

Place molecules between two plates of a capacitor:

The electrostatic potential can be written in terms of the
3 components of the uniform electric field

V(T):%—’_ZF(D{TQ:%—’_F&TOA

(Einstein summation convention on repeated indices)
The interaction operator with the field of the capacitor simplifies as
V= /dr 0(r) (Vo + Fara) = Vo + Fafla
where the operators of the total charge and total dipole moment of the molecule are

0= [ ar ) fio = [[dr oryre
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Schrodinger equation with perturbation

We are looking for the ground state solution of the problem
Ay = (Ho+ V)p = By
and we already know the (exact) solution of the zero-order problem
ﬁosoo = Fopo
Let us write AE = E — Ejy, the energy correction
(Ho — Eo)yp = (AE - V)
and in order to fix the phase of 1, impose the intermediate normalization

(polp) =1
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Introduce the reduced resolvent operator as
Ro = (1 = |i00) (ol) (o — Eo) ™"

which can be regarded as the inverse of the operator Hy — Eo in the space of functions

orthogonal to g o
Ro(Ho — Eo) = 1 — |o) (o]
Multiplying the Schrédinger equation by Ro

Ro(Ho — Eo)p = Ro(AE — V)

using the definition of the resolvent and the intermediate normalization an equation is
obtained for the wave function

¥ = o+ Ro(AE - V)
After multiplication of the Schrédinger equation by (|
(ol (Ho — Eo)|v)) = (ol (AE = V)[3))

we get the energy correction
AE = (po| V)
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[terative solution

These equations can be solved iteratively

AE, = (go|V|tn-1)
VY = o+ Ro(AE, — V)hn_1

To the lowest orders of iteration we find by using ¥o = ¢o and ﬁoapo =0

AE; = (o[ V[h0)
1 = o — RoVao
AE; = (ol VIth) = (ol V[tho) — (ol VRoV[tho) = AEL — (0| V RoV[tho)
2 = o — Ro(AE, — V)in
= o — Ro((o|V[tho) — (w0 V RaV'[tho) — V) (w0 — RoV'h0)
= oM — Ro(V — AE)RoV 0o
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H-atom in electric field

Hamiltonian of the H-atom in an electric field, F

H = H + 2F, where Hy = —%A—%
The Hamiltonian of the isolated H-atom has
1

the lowest eigenvalue Ep = —3 and eigenfunction o = ﬁe’r.

First iteration in the energy yields zero
AE; = Fx{po|2[tho) = p= - F= =0
First iteration in the wave function leads to the equation
Y1 = o — RoVpo
(Ho — Eo)r = — (‘7 — AEl) ©o

1 1 1 1 .
<—§A‘;+§>¢1—‘ﬁme

which has the solution
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Second energy iteration

X 9
AB: = Fu(polslin) = = - F2
This leads to a development of the energy in the powers of F,
9
E:Eo—I—AEQ:Eo—Z-FZ

the dipole polarizability is

a__(("LE) _9 ..
orz), o 2 7%
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Perturbation approach

Assuming that the iteration process converges, the exact wave function and energy can
be expanded in power series of a perturbation parameter A

(Ho + AV = AEY
as - -
AE =Y MNAE™  and =) Ayl
n=1 n=0
Substitute the series expansions in
AE = (po|V]9) and ¥ = g0+ Ro(AE - V)Y

leading to

DONTAE™ =3 N (o V™)
n=1 m=0

S A = 0+ Ro (Z ATAE™ — )\\7) > aFp®)
n=1 m=1

k=1
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Collect terms of the same power in \ to obtain the general recursion formulae

AE™ = (o] V]p™Y)

n—1
d}(n) _ _ﬁ0v¢(n_l) _ Z AE(k)ﬁow(n—k)

k=1

The reduced resolvent has the spectral resolution

Z |§00 900|
P By — Eo
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First order
AE® = (0| Vo)

.. 1%
WO = Ve = — Z <§k|_|§°>sﬁk
= Lk 0

The wave function corrections are often expressed in terms of the expansion coefficients
™ = (o ]1™) on the basis of the eigenfuncti f th d
i Dk genfunctions of the zero order
Hamiltonian .
W _ {2V o)
= -3 lolfle)

P Ey — Eo
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Second order
Energy

E® =(0|V [y = — (00| V Ro V| 0)

_ (2ol V]sox) {0k |V |¢p0)
== Ey, — Eo

k0
Wave function
oD = RV RV Y + BB Ry¥Tp® =
= RoVReVypo — Ro(V)RoVipo = RoV RoVpo
where we used the definitions

(V') = (o[ V|po) and V=V
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Third order

AE® = (00| V1) = — (0| V RoV RoV |00)
-y (ol VIow) (@ V1) 1]V |¢po)

0 170 (Ek — Eo)(Ei — Eo)
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Summary of energy corrections
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Energy with the first-order wave function

The energy (Rayleigh quotient)

@A+ V)
E= 0

with the first order wave function, ¢ = ¢o — )J%‘A/goo

©wo — )\tpo‘l}']%ow\f + )\‘7‘500 — )\ROV<po>

E = {
14+ X2{(poV Ro|RoV o)

After expanding the denominator and using that }A%oflogoo =0

E = (Eo + AEM — 2X% (00| V RoV | 00) +
+ )\2<<p0|‘7l%o(f{ + )\V)I%()Vkpo)) X
X (1 — )\2<<po‘7]%o|l%of/<po>)
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and collecting terms of the same order
E=FEo+AEW -
— A*2{o| V' RoV|p0) —
— X*(po|V Bo(H — Eo)RoV|p0)
+ X ol VRo(V — EW) RoV |100)

Use that E® = (V) and Ro(H — Eo) =1 — |0){¢o| and obtain the previously derived
3rd order energy expression

E = Eo + (0| Vo) — (20| V RoV |ip0) + (00| V Ro(V — (V') RoV|¢00)

This result can be generalized: the nth order wave function determines the (2n+1)th
order energy expression, provided the normalization is taken into account. This is
Wigner's (2n + 1) theorem.
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Deformation energy and perturbation energy

Up to second order the Rayleigh quotient can be written as a sum of two terms, the
expectation value of the zero order Hamiltonian

(o = MpV Bo|H|p — ARV )
1+ X2V Ro| RoV )

= Fo+ A\{g|VRoV|¢) = Eo + AEY)

and the expectation value of the perturbation operator

(p = ApV Ro| AV | — /\RoVso>
1+ 22(pV Ro|RoV p)

MelVle) = N2(p|V RoV ) = EW + AEE)

stab

The second order correction to the expectation value of the perturbation is twice the
second order energy correction and it is twice the energy raise of the wave function due

to the deformation of the wave function.

AE2) _

stab

—20EQ)

- AEQ) = 1AE 2

stab

AE® = AE®

stab
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Molecule in external potential

In first order of the perturbation theory

AEM = (yo|dltbo) - Vo + (o] fialto) - Fa = qVo + Fapia

one retrieves the classical charge-potential and dipole-field interactions.
In second-order of the perturbation theory

@ trm o s ol VIvk) (i [V i)
AE™ = —(o| VRV |1ho) = k%% Fr - By

The matrix elements (1o|g|1x) = 0, since the eigenstates are orthogonal. Only the
dipolar term survives

AE® = =% " Fa(tolfia Rofislto) Fa
ap

Using the definition of the dipolar linear response function (polarizability)

AE® = Z FocosFs
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In third order of the perturbation theory
AE® = — (40| VRV RoV |1o)
Insert the interaction operator, and remember that V =V — (V/),

AE®) = - 3" F,F3F, x
aBy

{Z Z ¢0|,Lba(|g: _?Z)E(\)A)L(ﬁgl/w (;2 |),va o)

k0 140
. (Yol fra [t0r) (Wil iy [tho) | _
(ol fis|ho) %; (Bn — Eo)z7 } =
1
=~ % > FaF5F, Bagy
afy

where 8,3+ is the first dipolar hyperpolarizability (non-linear response function).
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Multipole polarizabilities

Dipole polarizability is a symmetric tensor

[e%%% Qzy Qg2
o = Ayy Ay
Qzz

The Sl units of polarizability are Farad m?, or equivalently, C? m® J=! or C m? V1.
Other units are volume (A% or bohr®). 1 a.u. = bohr®*= 0.148185 A = 0.16488x10~*
Farad m*. 1 C* m” J~! = 0.8988x10'°cm® =6.065 x10* a.u.

Proportional to the volume, as it can be seen by introducing an average excitation
energy and using the resolution of identity for the polarizability of a one-electron system

Olfa|n)(n|fal0) 2 o N
3§—AEO ~ 57 ((017710) = {0/7a]0)(0]7a[0))

and inversely proportional to the excitation energy.
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As any second-rank tensor, it can be decomposed into irreducible parts, according to
a=a?+a® + a®?
where

1
aff; = gTr(a)(Sag

1
1
all) = 5(aap —apa) =0

1 1
ally = 5 (@as + aga) = 3Tr(@)das

a® vanishes, since o is symmetric. In a principal-axis system we have the decomposition

a 0 O e — O 0 0
a=(0 o 0]+ 0 Oyy — O 0
0 0 « 0 0 Ozy — @
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The first trace-invariant quantity that can be formed is the mean polarizability

1 1
o= §Tra = g(am + oy + @zz)

and the second trace-invariant is the polarizability anisotropy, y, defined as the positive
root of 1
7 = 3Tr(e?) - Tr(@)’]

or in components
> 1
7" = 5Baasase — aaacss]
which can be written in a principal axis system

21 2 2 2
Y= 5[(040:&C —ayy)” + (ayy — @z2)" + (Qzz — 0wa)]
and makes clear that this quantity vanishes for spherically symmetric systems.
For linear molecules .. = ] and azz = ayy = a1 and the polarizability anisotropy,
v
Y=o al
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Translation of polarizabilities

The dipole-dipole polarizability is always origin-independent.

Higher-rank multipole polarizabilities are (always) origin-dependent.
For instance, the A, .. component involves the ©,. operator. After a shift of the origin
by ¢ =(0,0,¢)
ezcz = @Sz - 2Cﬂzo
and the dipole-quadrupole polarizability at the new origin is

~O AO ~O
Azc,zz _ Z <0|/~1'z |n><n‘ezz ZCMZ |0>

— A9 _
AE(]n - Az,zz 2cazz

n#0

This means that the origin (and the dipole polarizability) should always be specified
when A, g, is given.
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Spherical harmonic polarizabilities

The general multipole polarizabilities, defined in terms of the (irreducible) multipole
moment operators, Q¢m

_ <O|QA€1m1 |n> <n‘Q€2m2 |0> + <O|Q€2mz|n> <n|QA€1m1 |0>
Qtymy,lomy = Z AE,
nF0 "

is a reducible spherical tensor quantity, which can be decomposed into irreducible parts as

Qprtykg = E C(lrlak; mama2q) ey my, tymy

mim2

where C(€102k; mimaq) are the Clebsch-Gordan coefficients.

Since C =0, unless k = {1 + 2,01+ ¢ — 1,...,|¢1 — £5|, the nonzero irreducible parts of
the dipole-dipole polarizability can be only with k£ = 0,2, for the dipole-quadrupole
polarizability, kK = 1,3, etc. For instance,

1
a11:00 = \/;(axac + ayy + azz)

2
Q11:20 = 57
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Induction energy

Consider a potential and its derivatives created by a molecule A at the center of
molecule B.
The corresponding perturbation energy will be induction energy. At the second order:

Taking into account that (1)8|§%|%£) = 0, one has the leading terms of the induction
energy:

E®(ind,B) =
(032 1b) (b] 2 |0
- (Tan - aﬁ:u'a )Z %(Ta’qA - Ta’ﬁ’ﬂg/ + .. ')_
b£0 0b
(01©25]b) (bl it |0)
- (TaﬁqA + Taﬂ'yﬂ'y )Z AEB (Ta/qA — Talﬁlugl +.. )—
b#0
A R&1b) (6108 5/10) A A
- (Taq - aﬁ,uu )Z AEB (Ta’B’q =+ Ta/ﬁ/'y/u'y + .. )—
b0 0b
(016%51b) (b0 5:10)
—(Taqu+Ta57y¢/ +)Z AEB £ (Ta/ﬂ/qA —Ta’ﬂ"y’//“?’ +)
b0 0b
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Introduce the multipole polarizabilities

-3 (0lfta|n)(n|fis|0) + (Olfs|n) (n|fia|0)

cop AEo,
n#0
_ x (0lta|n) (n]©3+0) + (0|83 |n) (n|fia |0)
Aapy = N
n#0
Z (0]8a5]1) (n]©+510) + (0]©+5|1) (n|©a(0)
Caprs = 37#0 AFon

and identify the parentheses as the electric field, field gradient, etc.
Fl = —(Tog" — Tappi +...)
Faig = —(Tapq” + Tappy + ..

The induction energy in terms of the field (and its gradients) and the multipolar
polarizabilities

E®(ind,B) = f%F(;“aaB,a,F(;“ - %F;“Af,a/ﬁ/mﬁ, - %Fof‘ﬁcfﬂ,a/ﬁ,F;‘,ﬁ, +
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Induction energy - spherical tensor components

In the spherical tensor formalism, the general polarizability component

alm,l’n’ = Z <0|Qeﬁ‘n><n|Ql’K"|02—E’—‘0i0|QAZ'H/|n> <n|Q£H|O>

n#0

and the induction energy takes the form

@ (ind,B) = -5 ZZaM ViVt = == ZAQZ,@MK

bk Uk

where AQE,, are the induced moments of B

B B A
AQZn = § afnf’n"/ﬁ’n'

!
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Truncation of the multipolar induction energy

The multipolar induction energy can be truncated
@ according to the powers of (1/R)™
does not ensure that the induction energy is negative

@ according to the maximum rank of the multipole operators (L)
always negative

J. Angyan (EMQC) IMF 137 / 201



Distance dependence of the induction energy

Interaction of a spherically symmetric polarizability ang = adag with multipoles:

@ charge
_ 1 1 1¢a
E(ind, q) = —59TaapsTpg = —quTaTaa =-3 Z Rsz = _§ﬁ

@ dipole

; 1 1 12a(3cos? 0+ 1
E(lnd,,u) = _EﬂaTaﬁa,@ﬁ’Tﬁ’a’Mw = —E%

@ quadrupole
E(ind,©) ~ R®
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Convergence of the induction energy

The multipole-expanded interaction Hamiltonian of a H-atom + proton system is

oo

Vonate = % [1 - Z(%)TLPH(COSH)]

n=0
The exact second order multipole energy (Dalgarno & Lynn, 1957)
i (2n +2)(n+2)
—~ (n + 1)R(@n+2)
The ratio of successive terms
lim 2n(n 4 3)(2n + 3) _
n—oo (n+2)R?

indicates that for any value of R the series is divergent.
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Non-additivity of the induction energy

@ charge-polarizability interaction

1, 1 ¢?

Uga = —EOCF = —Eaﬁ

@ two charges of opposite signs: F' is
doubled

U{q1+q2}a =4Uga # Ugia + Ugra
@ two charges of the same sign: F' is zero
Ulgitarra = 0# Ugia + Uga

@ this effect explains the arrangement of
Mg?* cations (and other alkaline earth
cations) around the polarizable Cl— anions TA/J’
in crystal and molten phases: induction ]
effects arising with an angle Mg-Cl-Mg
< 180 effectively reduce the cation-cation
repulsion. If the anion is not large enough
(F—) this phenomenon does not take
place.
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Cooperativity of induction

@ Interaction of polarizable particles enhance the
overall polarization effect.

AIJ'A A
@ The induced dipoles p; and p, are obtained
from the total local fields wh
p; =0 F; = 041(E + T 'P2)
P, =a2F>; = 0(E+Ta - py) =
@ The solution of this coupled system of
equations:
P\ _ al_l -T \'( E
p, )\ -T ot E apel B
ut

@ The effective polarizability is:
1 (s3] alazT
1-T?’a100 \ 10T (0%}
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Part V

Charge fluctuation interactions
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Thermally averaged interactions

@ Thermal average of orientation-dependent
interactions U(Q2), where Q = (6, ¢)

@/ cos™ 0 { 0, n=2k+1
U(Q)/kT = 1
(Uq#> fdQU(Q)e T k11 n = 2k.
JdQe U cos 6 =
@ Expand the exponential (U(Q)/kT < 1): 0, n=2k+1
0 L AQVR) — VAQ/KT 4. ) =in ¢_{ (2;;2 =2k
aw [dQ1 - U(Q)/ET +...)
= (U-TU?/kT) (L + T /kT -
(7 7/ )(72 /kT) k| cos?:0  sin?*0  cos?k ¢
=U—(U?/KT —U/kT) + ... 1] 1/3 2/3 1/2
where 2 1/5 8/15 3/8
o 3 1/7 16/35 5/16
Un = /dQU"(Q) = / U™ (0, ¢)sin 0dodeo 4 1/9 128/315 35/128
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Charge-dipole interaction

@ Charge-dipole interaction

@ Thermal averages

_ qAuB
RZ

cos 6

Ugu = 2cosG-O

@ Analogous to the charge-polarizability interaction:

J. Angyan (EMQC)

R
= _ W 1@y’
U?q, = T cos?f = 3R
1 q2,u/2

<Uqu> = _3k7T R4
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Dipole-dipole (Keesom) interaction

@ Dipole-dipole interaction

Upp = —M?%I;B (2cosBa cosfp — sin B4 sin 05 cos p)

@ Thermal average

(Unp) = —Wuu/kT

L 2 2 -
U2, = —kiTM‘?{’LGLB (4 cos2 4 cos2fp — sin?f4 sin?Op cos? ¢ + cross terms)
S Lk L1 2 2 L 2 s
~ kT RS 373 373727 3KT RS
@ Keesom forces:
2 ik
(U} = = o 224

Correlation of thermal fluctuations give rise to universally attractive interactions.
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London dispersion forces

O O

1
Edisp = —g /dw

@ universally attractive
@ always attractive and decays as R~°

@ long-range dynamical correlation
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London dispersion forces

O O

1 .
Egisp = —5 /dw ai(ry, riiw)

@ universally attractive
@ always attractive and decays as R~°

@ long-range dynamical correlation
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London dispersion forces

1 .
Egisp = —5 /dw ai(ry, ri)iw) T(ry, 5)

@ universally attractive
@ always attractive and decays as R™°

@ long-range dynamical correlation
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London dispersion forces

1 . .
Egisp = —5 /dw ai(ry, ri)iw) T(r1, 12) az(ra, raliw)

@ universally attractive
@ always attractive and decays as R™°

@ long-range dynamical correlation
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London dispersion forces

1
Eaisp = —=— | dwau(ry, 71]iw) T(r1, 72) aa(ry, raliw) T(ry, 1)
2w

@ universally attractive
@ always attractive and decays as R™°

@ long-range dynamical correlation
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Long-range intermolecular RSPT

The solution of the Schrédinger equation for the non-interacting complex
(fIA + FIB) vr = Eopr
can be obtained from the solutions of the isolated subsystem Schrédinger equations
B3 = Bl APy = By
Ax A Zo, 1 ZoZ o
oy (f-p )y Loy L2

r
i€X e ijex Y abex
1<J a<a’

as simple products (not antisymmetric for intermolecular electron exchange) of the
monomer wave functions

A B
Pr = wa 1/’1;
and the eigenvalues are the sum of monomer eigenvalues

E,=E} + EJ

J. Angyan (EMQC) IMF 147 / 201



Partition of the Hamiltonian

Since the subsystems are distinguishable (preserve their identities), each of the
N = N4 + Np electrons and M = M4 + Mp nuclei can be assigned to one of the
subsystems. Subtracting from the total Hamiltonian

. Na+Np .
(SN (R IS

Ma+Mp 7 1NA+NB 1 MA+MB
«
Raa’

i,j=1 a,B=1

the sum of monomer Hamiltonians one obtains the operator of the intermolecular
interaction

DI = S S DI DR D D

,
€A BEB icapen B scajem | i€A jEB

In the absence of any “natural” perturbation parameter, we shall consider an adiabatic
switching of the interaction between the subsystems:

A=A+ A% + )V
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Longuet-Higgins form of the interaction operator

The interaction operator can be written in a more compact and separable form, based on
the charge density operator, defined as

§5(r) =" Zad(r — Ra) = > _ d(r —rs)

acX 1€X

with the matrix elements

(¥a] 8™ () thar) = Buar Z Za6(r — Ry) — P(ad|r,r")

acX

where P(aa’|r,r’) is an element one the one particle density matrix.
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The state charge density

Oaa(rT) = Z Zab(r — Ro) — P(aalr,r)
aeX
contains the contribution of both electrons and nuclei.
Transition charge density

Ouar (r) = —P(ad’|r, )

Using 9(r) and the Coulomb-kernel function, T'(r,r’') = |r — 7’|, the interaction
operator is

V= /dr/dr'@A(r)T(r,r')@B(r')
By a straightforward generalization of the Einstein summation convention

V =67 T, 00
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The polarization approximation

Direct appllcatlon of the RSPT to the the above problem with the eigenfunction of
Hy = Ha + Hg as zeroth order wave function:

B = (%IV\%O. )

(‘OEJOI - _ROV@ o ZAE RO(ppol

This is called the polarization approximation (antisymmetry requirement neglected).
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First order: electrostatic energy

The first-order interaction energy in this approximation is
EG) = (e'vd’ |V 1vs' i)
Using the Longuet-Higgins operator
B = [ar [[ar' w1t ) )T w0 010

it is easy to see that it is the Coulomb interaction of the charge densities of the two
subsystems.

E’gil = /dr/dr o0 (r)T(r, ") ono(r")

Electrostatic potential of the subsystems
VA = [arTeen) V) = [T ade)
Alternative form of the first order interaction energy

B = / drogs(r)VE(r) = / drof(r)VA(r)
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Second order energy in the polarization approximation

The second-order interaction energy

B =% (e vd' |V e ) 2
pol AE$ + AEB

abs#00

can be written as a sum of three terms, each having a different physical meaning.

=Y (' o [V [ v )

induction A — B

ol B
’ b5£0 AEgy,
A BT, A B\ |2
- Z [(Wo %Al‘;?'}fa Yol induction A — B
a0 Oa
A BIYr(, A, B\ |2
- Z [(Wo 1/’(34|V|1/1a df;’ ) dispersion
pr AL + AEf
b£0

These terms correspond to the following decomposition of the reduced resolvent

A [va v ) (e ¥y | ANA | pBAB | pAB , .
Ro= % FA_EAL B _pB 100" +RO7+ R = Ro(ind) + Ho(disp)
a,b a — 0 a — 0
(ab)#(00)
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Induction energy

AEP(ind, A — B) = —(ug' v |V B O% Vg yi)
~ 1
= 7VTB<Q;‘4ROQ7A’>VTB = 75‘/7'BK(Q:X: Q:")VTB
The K (02, 02) = a(r,r';w = 0) charge density linear response function (susceptibility)

is a kind of generalized polarizability function, which gives the induced charge density in
a static external potential

NLOE /dr'a(r,r/;w — VA

The sum-over-states definition of the charge density susceptibility at the w frequency is

2 _ 2
Wh, — W

a(r,r’;w) = ;; [(0]a(r)la)(0]a(r")|a) + (0la(r")|a)(0]a(r)|a)] woa
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The induction energy can be regarded as the stabilization energy due to interaction of
the induced charge density with the electrostatic potential of the partner

aEd, =~ [ drag Vi)

partially compensated by the (positive) deformation energy, spent to polarize the charge
distribution

) _ (2)
AE‘def - 5 Algstab

Which means that the induction energy

+AEQ) = 7AE(2

stab

AE®(ind, A — B) = AE?

stab

is the half of the stabilization energy (in the linear response approximation).
Note: do not mix up the terminology “polarization” and “induction”...
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Dispersion energy

@) (disp) = —<wa“w§|VRABV|w5‘w§>

//// r,s)T(r',s") ZZ ARIAG QOb( )l (s')

wd +wl
u¢o 20 0a T Wop

We can transform the double sum according to subsystems using the following identity

1 2/°° T Y
== —— -7 _dw
x4+y wJo 2?+w?y?+uw?

which leads to a separable form at the expense of an additional integral in the frequency

domain
£ (disp) = / / / / T(r, $)T(r', s')x

/ h Z WOaQOa QOa(T ) Z wObQOb( )oon(s")

2
a0 ?+w? b0 wOb tw
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Dispersion energy

We can recognize in the two separate sums the dynamic charge density susceptibilities at

imaginary frequencies of both subsystems, i.e.

%Z [(0]a(r)|a){0[a(r")|a) + (0] &(r")|a)(0]a(r)|a)] woa

2 2
Woe T+ w

afr,r';iw) =
a#0

Final expression of the dispersion energy (Casimir-Polder)

dlsp / dw /// drdr'dsds’ x

x o (r, v’ iw)T(r', 8" )P (s, s';iw)T(r, s)

Corresponds to the Coulomb correlation of fluctuating charge densities of the two
systems. (Cf. fluctuation-dissipation theorem).
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Summary of second order terms

NAD

A B A B A B A
Oy TTSQS Oy Trsass/ s'r! Oy Trsasgl s'r! Q.

electrostatic induction dispersion
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Third order induction energy

Third order energy
AEY = oo VRo(V = (V) RoV [ip0)
Decomposition of the reduced resolvent

Ro(ind) = R§O” + O*RY Ro(disp) = R'?
Pure induction part of the third order energy can be expanded
AE® (ind) = (go|V Ro(ind) [f/ - <f/>] Ro(ind) V| 20)
= TTSTT/SITTNSII X

(0808 |02 8% Ro(ind) [@f@f - <§f/@5>] Ro(ind) 8285 108 08

J. Angyan (EMQC) IMF 159 / 201



Two kinds of terms are obtained

@ hyperpolarizability term (nonlinear response), e.g.

Trs Tyr o T (07 (005) (07) (02 RE (85 — (85)) R 85)

L65(s,9",57)

@ iterated linear response terms, e.g.
AA\ ) AB 5B A AA PANA N\ A
TTsTr’s’ r!’s! <Q'r‘ > (QSBROBQ?’> <QT’RO Qr”)(:g?”)

%aB(s,s’) %aA(r’,r")

Graphical representation of the iterated linear response terms
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Analogous terms appear in higher order terms, that can be iterated up to self-consistency

Gl Gt
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The Hamiltonian operator of a ternary complex
ﬁA+ﬁB+ﬁc+‘7A3+VAc+VBc

is "additive".
@ First order energy is strictly additive

@ Py [Vas + Vao + Vec vty Py©)
= (9" [Vanlet ) (@ [p©)+

+ (@ Va9 ) (P [0 7))+

+ <waC|VBc|wa"><wA|w“>

= AEY), + AEG), + AEG),

(1
AE‘A)BC -

@ Second order energy
AES) . = WPy (Vas + Vac + Vse)Ro(Vas + Vac + Vse) [ 9P )

The resolvent can be decomposed as

R = RO
+RGPOC + RFCO + R§AOP 2-body dispersion
+R$OP0O° + REOCO* + RS 040" induction
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Three types of contributions according to the interaction operators

@ "Diagonal" term
WPy [Vap RoVaglp P y?) =
WA [Vap (0| Rl ) Vaplp?e®) =
@ P |Vap(Re'” + R&OP + RGO )Vaply*y®) = AES)
@ "Off-diagonal" term
(@ g VapRoVac P y) =
(WP Vap (| Rol ") Vac | 9©) =
(WP | Vanlv”) Ry (0 [Vac |y ) =
TT‘STT’S’QSB<§?R64§TA’>QSC;

non-additive 3-body induction interaction.
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London dispersion energy

Dispersion interaction energy in spherical tensor formalism
2 .
SCEE DI NS
a#0 b#0Lpamp bpmp
(001Q2 1 ToamatpmpQF 1 |ab)(ablQpr 0 Tyt vt g1 e QF ., 100)
LaompatlamatpmpXlpmp ym!y 2ymy e mly pmly

% AE$ + AES

Applying the Casimir-Polder method

. 2
E(z)(d|sp) = —FTTeAmA,zBmBTeI m/, 2 mly X

B

O\QeAmA|a><a|Qel o 1000 22 (010, 1y [D)BIQE, . 0}t
LD >
a#0

2 2 2
Wh +w b0 wop +w
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Dynamic (frequency-dependent) multipole polarizabilities in molecule-fixed frame

(W) = Z 2won (0|Qema)(a|Qerm/|0)

2 —w?

Qgm0 m/
Woa

n#0

related to the charge density susceptibility
Cprm, 0 m! (W) / drdr' Rem(r)a(r, r'|w)Rerm (r)
Dispersion energy

(d'SP E Tepmaesmply om/y mBXZAmAéBmBZAmA,Z mly
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The Casimir-Polder or dispersion integrals are defined as
AB A .\ B .
XzAmAeBmBz'Am'A,egs = Z/dwaZAmA,Z'Am'A(Zw)azBmB,Z'Bm'B(Zw)

The dispersion integrals can be calculated by numerical quadrature as

hM

AB Ag. By
XA = LS wwg)a (i )a® (i)
j=1

With a Gauss-Chebyshev quadrature scheme the grid points are chosen as

w; = cot 7r2j—1
T aM

2w
4M sin®(m(25 — 1)/4M)
Typically, with 5 and 7 grid points one has an accuracy of 0.1 %.

and the weights

w(wy) =
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Numerically more efficient procedure (for high-rank calculations) is to contract first the
polarizabilities with the interaction tensors (in local frame) and perform the numerical
integration afterwards (Hattig, 1996).

In this form the interaction tensors and X“Z are both reducible: they transform
according to the double and quadruple product group of SO(3). In terms of irreducible
tensors, the dispersion coefficients are of the form (Wormer)

LaLgL Z Z ]
CZAZTAZBZI = XZAmAleBZAmA [/ / factor

mAmA mBmB

The algebraic factor depends on the Wigner 35 and 9; coefficients. These coefficients
are coupled to the following form

CEALBL (g =0y 4+l + 04 + 5 +2)

For atoms in S-state, for example,

£O _ i o B2

disp

C1277,

TfC(E;n—k—l)

2€+2£’ !
C(Z g) W2 /dwaz W O[[/(’LW)
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The dispersion integral depends on the properties of the individual molecules and
independent of the intermolecular geometry. The complete expression can be expressed
in terms of irreducible spherical tensor components.

@ dipole-dipole leading term R3R 3~ R

@ dipole-quadrupole would be R™3R™* ~ R™7,
after averaging over all orientations, it gives zero

@ quadrupole-quadrupole term R™*R™* ~ R~®

@ dipole-octopole and quadrupole-qudrupole R~1°
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Dipolar dispersion energy

The leading multipolar term in the dispersion interaction energy

~AA A~ ~B
®)(disp) = — ZZ (00|24 T o5 lab) (abl fi5 Tys 15 |00)

o AEL + AEE

@ Casimir-Polder formula

E®)(disp) = —

A
5—/11 Olua|a><a|u IO)wOaZ(OW 5 1b) (bl 10)wob
a#0

2 2
woa—l-w b0 wOb—l—w

@ Unsold approximation
@) disp) = —TugTys 5250 ~LLUAFE (Oluala><a|u7 10) (015 15) (bl 210)
P) = ~TapTys AE(ngA a

B
a0 b£0 “0a “op
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In order to factor this latter expression, we use the identity

AESAES  UaUs

- 144,
AER AL~ UatUp T A%

with
A, YUa— 1/Eg +1/Us — 1/E§
ab — A B
1/E0a + 1/E0b
that can be made negligibly small by choosing appropriate average excitation energies
Ua and Up

UaUsp

7;11& T A B
4(UA+UB) BLysqay O35

E®(disp) ~ —
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In both expressions we can separate the orientation-independent spherically averaged and
various orientation-dependent components, by using the decomposition of the
polarizabilities to irreducible parts. The spherically averaged component becomes in both
cases 6

A A A
TopTysa 5a7a35@5 =« aBTa@Tag =« QBE

leading to the general expression

with the Cs coefficient

Cs = 3h/dwaA(iw)aB(iw) (Casimir-Polder)

Co ~ 5 3UaUs otal?

AUa+05) (London)
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Experimental oscillator strength distributions can be used to determine “experimental”

Cs coefficients.

Roughly proportional to the square of the polarizability /volume.

Some typical values

Cﬁ CS Cl 0

system

H---H
He---He
Ne- - - Ne
Ar--- Ar
Kr-- - Kr
Xe- - - Xe

6.5 1244 1135
146 13.9 182
6.6 57 700
64.3 1130 25000
133 2500 60000
286

Combining rules can be deduced from the London-formula

P~ JopA OBP
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Approximate dispersion energy

The average excitation energy of the London formula is an empirical parameter, either
the first ionization potential (quite bad) or the first excitation energy (somewhat better)
is used.

Similar expressions can be derived from the Casimir-Polder expression, by considering
some general properties of the average dynamic dipole-dipole polarizabilities

h pard way —|—w2

We are looking for the simplest, one-term approximation in the form
—2
. w
ofiw)~r ——— -a
( ) w2 +w2

Parameters a and @ will be found from the asymptotic behaviour of a(iw).
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For w = 0 one gets the static polarizability, a = «(0).
For w — oo one gets the Thomas-Reiche-Kuhn sum rule, the number of electrons

aiw) — h%ﬂ Z2AE0nx(2m = #
n#0
In this limit we have
a _ n
w? [P = w2
_2 n
h2a(0)
1 n
“ = 0\ a(0)

which leads to the Mavroyannis-Stephen (Slater-Kirkwood) approximation

3a?af

Ce ~ (a? /nA)1/2 ¥ (aB /nB)1/2
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Take another, equivalent form of the dynamic polarizability
o+ + |”'on| |7‘on|
a(w) =’ (w) +a’(-w) 3hzw0 +w 3hzw0n—w
Forw =0

For w — oo

oo (@) = 3 3 Iroal* = 3 [(01r7[0) — (0r[0)? = 5 (Ar)?
n#O
Considering a one-term approximation
/
n _ a
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Taking the limiting cases one obtains

;1 __ 2 (ary
@ =500 T3 a

and we get the Salem-Tang-Karplus approximation

a’a®

a? /(A 4)2 + aB(Arp)?

Cs =
For dimers it is identical to the Alexander upper bound

Cs < 25(-2)5(-1) = Ja(Ars)
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Solutions of the H 4+ H dispersion problem

The multipolar interaction Hamiltonian for two H atoms lying on the z axis, separated by
a distance Ry is

V = — 2[Ry €162 cos b1 cos 6,
+ B£185 cos 01 (3 cos” 0 — 1)
+ €165 (3cos” 01 — 1)(3cos’ B — 1) + ...
with polar coordinates &1 = 12, a = (V6/2)Ry 3, 3 = (1/(30)/4)Ry* and
v = (v/70/8)R™°.

By direct summation over the excited states, Eisenchitz and London obtained for the
dipolar dispersion energy

12 AFEon 25, AFom 28

T po6
S CnIERICrE

E® —

It is difficult to make converge this expression, because of the discrete-continuum matrix
elements. The best value is Cs = 6.47.
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The difficulties of the sum-over-states solution can be avoided by solving directly for the
first-order wave function using the Ansatz proposed by Slater and Kirkwood,

Y(r1,m2) = o(r1, m2)[1 + B(r1, 72)]

with the ground state unperturbed wave function of the dimer, ¥o(r1,72). The
two-particle correlation function, ¢, satisfies the differential equation

%V2¢+(Vlnwo)~v¢)—v:0

where v can be one of the multipolar terms of the interaction Hamiltonian. Taking the
correlation function in the form

5= VREE)

=~

leads to a differential equation for R(¢,¢').
Slater and Kirkwood (1931) obtained an approximate solution, leading to Cs = 6.23.
Pauling and Beach (1935) used special orbitals to construct the Hamiltonian matrix and
obtained Cs = 6.49903, Cs = 124.399 and C1o = 1135.21. Recent exact solutions
obtained by Choy (P.R.A. 62 (2000) 012506) using orthogonal polynomials, confirm
these values.
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Part VI

Short-range forces and their origin
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Short-range forces and their origin

@ Penetration effects
@ Overlap repulsion — failure of the polarization approximation of PT

@ Damping effects
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Penetration effects: potential in the overlap region

Take a charge distribution

o(r) = f(w)a(r)
with a radial part, which vanishes only at 7 — co. The general expression of the
potential is

V(R) = oo(ﬂ“)/ drr ﬁM)Z/dwylm Y ()

m=—1

The radial integral should be divided in two parts

I(R) = / drr? Rl+1 / drr? Hla(r)
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Potential in the overlap region

For instance, take an exponential function (STO)
ar

o(r)=r"e"

Use the integration rules

oo | o | n R k
_ n! _ n! a _
/ drre " = —— / drr™e” " = (aR) e "
0 R !

an+l

The radial integral

nl 1 n+2+1 (aR)k o - n+1—1 (aR)k o

The potential of a 1s function (I = 0,n = 0)

3
o(r) = %e_%” Vs (R) = % [1 —(1+ aR)efzaR}

In general, the potential of a charge distribution can be separated to a multipolar and

penetration component.
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Exact multipolar part of the potential

In quantum chemistry, molecular charge densities are usually developed on Gaussian basis
functions
o(r) = 3" Zud(r — R) = 3 Puxi(m)xu(r)
nZ

For this case, the multipolar potential can be exactly evaluated.
Let us consider the x, (7) functions as primitive Gaussian functions of the general form

x(r) = R(r)Yim(0, ¢)
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The electronic contribution to the charge density is the sum of two types of terms:

@ One-center densities, both basis functions are on the same atomic center
0ur (1) = Ru(r)Ru (1)1, m,, (W) Y1, m,, ()

Apply the sum rule (Clebsch-Gordan series)

Vim (@) Yim, (@) = Y K" Vi (w)
Im

with
=L <l<l,+1 and —my+m,+m=0
The one-center densities can be written as a finite series of multipolar potentials
(maximal order is I, + 1,,) around the natural expansion centre.
@ Two-center densities can be handled in an analogous way, by using the Gaussian
addition theorem, which leads to the natural expansion centre, the “barycenter”
a,R,+a,R,

H =
nz
e + Ay

The multipole expansion wrt to the barycenter is finite, with the highest rank of
multipole of [, + ..
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Beyond the polarization approximation

The RSPT applied to intermolecular interaction is often called polarization
approximation, since it neglects effects that are related to the antisymmetry of the total
wave function. In the following we shall discuss the failure of the polarisation
approximation and one of the possible methods to remedy this situation.
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H atom + proton system

Zeroth order Hamiltonian and wave function and the perturbation potential are

1 1 . 1 1
0 2 A Po =234 s R

At R < 0.05 a.u. (limit of united atoms) RSPT yields

Ea(R)= -2+ gRZ + 136R3 + O(RY)

For very large intermolecular distances, R > 12 a.u., the total energy can be

approximated as

1 225 75
B(R)=FEa+ 5 =~"77 — 75

+0O(R™)
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Convergence of the polarization approximation for Hy

n (k)
A(n) =100 (1 — Ek:liw
AEexact
R=3.0 R =125
n AE™ Aln) AE™ D)
1 3.3050(-03) 1026 15000(-11) __ 100.000
2 -2.5686(-02) 71.14 -9.4250(-05) 27.809
3 -1.1074(-02) 56.87 -1.2599(-06) 26.844
4 -9.8501(-03) 44.17 _1.5711(-07) 26.723
5 -8.0099(-03) 33.84 -1.5409(-08) 26.711
6 -6.7955(-03) 25.08 -3.8934(-00) 26.708
8 -4.5279(-03) 12.03 -1.5287(-00) 26.706
12 -1.3808(-03) -0.41 -1.3304(-09) 26.702
16 +2.3496(-05) 240 -1.3244(-00) 26.698
20 +3.0523(-05) -1.07 -1.3241(-09) 26.694
30 -3.6059(-05) 0.30 -1.3241(-00) 26.683
38 1.3906(-05) 0.07 -1.3241(-00) 26.675

Chalasinski et al. IJQC 11 (1977) 247
At large R the exact wave function (with intermediate normalization) is

Y =¢@a+pp~1lsa+1lsp

i.e. the modification brought by the perturbation V is not small at all.
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@ near A
o Vis small, therefore ¢ = 1s4 is good approximation
@ near B

o Vis big, therefore o = 1s4 is very bad approximation.
Expand the ¥ = 1sp function by the eigenfunctions of A-centered basis

Y5 =Y (Yslar)ax

k
At larger R bad convergence, since {ax} vanish exponentially at B.

AE = (olVea) +  {eolVea)
rapid convergence obtained only at inf. order
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Example of two H atoms

Interaction of two H atoms
1 1 1

B T24  T12

Unperturbed wave function
¢o = ao(1)bo(2)
The RSPT charge density is a simple superposition of the 1s densities,
o(r) = o1s(r — ) + e15(r + )
In case of overlapping electron densities the antisymmetrized (triplet) wave function is
1
0 = ————— [ao(1)bo(2) — ao(2)bo(1
o = s [0 ((2) ~ aa(2a(0)]

and the symmetry-adapted charge density is

o(r) = 1_7152 [o1s(r — @) + 015(r + ) — 2S1s(r — ) 1s(r + x)]
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Density

@ depleted between nuclei

1

ofr=0)= 2015(%) — 25015(2)] =

ol
@ enhanced outside the nuclei, e.g. at r =2z

1
1-52

o(2z) ~ [015() + 01:(37)] =

The Hellmann-Feynmann forces will be repulsive.

2
T Sle(w) < 2015(x)

1
1_752913(33) > o15(x)

@ electron tunnels in both directions = exchange tunneling

@ due to % the electronic motions become correlated = dispersion

In many-electron systems the RSPT ground state violates Pauli-principle =
antisymmetrized product would be a better 1o, but it is not eigenfunction of Hp.
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Behaviour of the RSPT interaction energy

AE(R)

“/AERS(R)

@ At short distances RSPT (polarization approximation) misses the repulsion: no

acceptable minimum

@ At large distance AE(R) — AE&RS)(R) vanishes exponentially, therefore the

polarization approximation is acceptable.
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Symmetry failure

Why is the polarization approximation wrong at short and intermediate distances?

@ Antisymmetrizer commutes with total Hamiltonian
[A, (7 + Af/)] =0
but neither with IAIO, nor with V'
[A, Ho] # 0 [A,V]#0
It follows from the commutation rules that
[A, Ho] = —\[4,V]

i.e. non-zero zeroth-order and non-zero first order quantities are equal to each
other: no unambiguous definition of the perturbation order.
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Symmetry failure

@ Antisymmetrized product states of the subsystems
A A B
Awa Po

form a non-orthogonal set. A hermitian operator has always a orthogonal
eigenfunctions. There can be no Hermitian Hamiltonian associated with these
zeroth-order wave functions.

@ Symmetry dilemma: Zeroth order Hamiltonian IA{()\ =0) = fAIA + }AIB has lower
symmetry than H(\ = 1)!
IA{A -|A- I:\IB SNA ® SNB
H SNA+Ng
The direct product the symmetric groups of rank N4 and Np is a subgroup of
SNA+NB'

Consequence: the polarization approximation is only asymptotically convergent, i.e. at a
given intermolecular distance and orientation one cannot obtain the exact energy as a
power series of the A perturbational parameter. In the practice, PA is divergent at higher
than 2nd order.
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Claverie's analysis

E(LR)

The lowest eigenfunction of H(A = 0)
is a “bosonic” state, which is connected
with the physically forbidden mathematical
ground state of H(A=1), while the physi-
cal ground state of H(A=1) is connected
with an excited state of H(A=0).
Difference of p.g.s. and m.g.s. decreases ex-
ponentially with R.

Since the m.g.s. becomes repulsive only at
chemical bond distances, polarization ap-
proximation misses the repulsive effects.

Two possible strategies:

@ abandon the usual partition and find a Hy for which fhpo is eigenfunction
@ maintain the partition, but reject RSPT
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Symmetrized RS perturbation theory
Let the (N4 + Np)-electron antisymmetrizer

A= (-1)"P

1 >
V/(Na + Np)! PESN 1Ny,

and set the following zeroth order approximation to the wave function, satisfying the
intermediate normalization

Yo = NoAgpo No = (ol Apo)

First iteration in the energy
AFE; = No{po|V Apo)

First iteration in the wave function
PP = o+ NoRo(AEL — V) Ao
which is to be compared with the RSPT (polarization approximation, PA) result
P4 = oo~ Rulligy
where the second term vanishes as R — co.
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Separation of the V-dependent component of the first wave function iteration

[Fo+V, 4] =0
A = BoA — Ao+ 1)
(AEy — V)A = AAE, + floA — Afly — AV

(AE, — V)A = A(AE, — V) + [Hy — Eo, A]
Ro[Ho — Eo, Alpo = Apo — (w0l Apo) o
NoRo(AE: — V) Apo = NoAwo — Nolo| Apo)po + NoRoA(AE: — V)0
= NOASOO — o+ w(l)
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The first iteration of the wave function can be decomposed as

1 = o + 4" 4
i.e. a large exchange correction

wéexch) — NoAwo — o
and a small V—dependent correction,
YW = NoRoA(AE: — Vo
The second energy iteration gives
AE; = (po|Vepr) = EM 4 E®

with o .
E® = No(o|V RoA(AEL — V)o)

and due to the hermiticity of V and A

E® = No({ AV — ABL)o)
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Separation of exchange contributions

At any order of the SRS perturbation theory, the energy correction can be rigorously
decomposed as a sum of exponentially decaying exchange component and the
polarization component

E(n) = E + Eexch

This can be done using the decomposition of the total antisymmetrizer as

NA!Np!

A= 22 0
(NA—I—NB)!

AaAp(1+P)

where P is the sum of inter-system permutations.
First order exchange energy

5 _ (o VPeo) = {0V o) (00| Pepo)
exch 7
1+ (po|Pwo)

Second order exchange energy

5O _ <sa£?.|vﬂ>so> (P17 o) (0ol Peo)
exch <(PO‘?§00>
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Symmetry adapted perturbation theory (SAPT)

(Jeziorski, Moszynski, Szalewicz and Williams)
Zeroth-order wave Hamiltonian is the sum of isolated molecule Fock operators and the
solutions are expanded in a triple perturbation series

A=F*"4+FP 4+ ¢V +2XaWa +ApW5

Consecutive application of the RSPT (polarization approximation) and symmetry
adapted perturbation theory (exchange corrections) leads to the following expression of
the interaction energy:

AE=>"AEW +> AED
n=0 n=0
and both components are developed in the orders of the intramolecular correlation

operator
AEy) = Z Z AEL” AE), = Z Z AEg)

1=0 7=0 1=0 5=0
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SAPT

Symbol Name Description
E;(mllj) Electrostatic Classical electrostatic interaction of unperturbed Hartree-Fock charge distri-
1 butions
E(OTL) Electrostatic: correlation corrections Correlation correction to the electrostatic energy from the mth order in-
p tramolecular correlation effects on the charge distributions
Egi‘?})‘ Exchange (overlap) repulsion Repulsion of the closed shells: modification of the interaction energy of
Hartree-Fock due to the inter lar antisymmetrization
ES(;‘) Exchange (overlap) repulsion: correlation cor- Intramolecular correlation correction to closed-shell repulsion
rections
Symbol Name Description
Ei(n:) Induction energy Energy arising from the distortion of each molecule in the field of the unper-
turbed Hartree-Fock charge distribution of the other
20 . . e . . . N
i(nd»)exch Exchange induction Modification to the induction energy due to antisymmetry effects
Eg,iO) Dispersion energy Energy arising from the correlated fluctuations of the of the unperturbed
P Hartree-Fock charge distribution of each molecule
g?sop)-exch Exchange dispersion Modification to the dispersion energy due to antisymmetry effects
E.(2n) Induction energy: correlation corrections Corrections to the induction energy due to intramolecular correlation effects
ind
E((ﬁ;pL) Dispersion energy: correlation corrections Corrections to the dispersion energy due to intramolecular correlation effects
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SAPT decomposition of the He, interaction energy
(After: Korona et al. J. Chem. Phys. 106 (1997), 5109)
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