
Version control
Version control is a powerful tool for many kinds of work done over a period of time, including writing
papers and theses as well as writing code. This session gives a introduction to a version control system
called subversion.

Some reasons why using version control for writing programs is a good idea are:

• efficient development practices. It is very easy to try things out and experiment as undoing any
unwanted changes is a single command (rather than undoing all changes by hand).

• reproducibility. Version control makes it possible to easily roll-back to previous versions of the
program and so re-run calculations with exactly the same program originally used. Of course, results
should not change as a program evolves (assuming that the program was correct in the first place). If
a bug does enter the codebase then version control also makes it easy to find out what results are
affected.

• makes it easy to collaborate with colleagues and work on different computers by communicating via
the version control system.

There are two types of version control systems: centralised version controls systems (CVCSs) and the
(more recent) distributed version control systems (DVCSs). A CVCS does all communication via a central
server which stores the repository whereas a DVCS is completely distributed and each user has a full
copy of the repository. RCCS, CVS and subversion are all follow the CVCS model. (RCCS and VCS are
both very old: don't use unless you absolutely have to!) Recently many DVCSs have been written,
including monotone, mercurial, bazaar and git. There are advantages and disadvantages to both
approaches. We will use subversion throughout this course as it's widely used and is easier to learn than
a DVCS.

subversion
Some terminology used in subversion:

repository

The repository is located on the server and stores all the files and directories under source code
management as well as their histories. Users read from and write to the repository.

working copy

The working copy is a local copy of the repository. It does not contain the full history of the repository.
Changes are made in the working copy before being sent back (committed) to the repository.

revision

A revision is a snapshot of the what the repository looked like in time. Subversion labels the revisions
by an integer, which increases as a new revision is added to the repository. A new revision is created
each time a set of changes are committed to the repository. Revisions in subversion are global: files
all have the the same revision id, so committing a change to one file will cause the revision id of all
files in the repository to increase. In this way the exact state of the repository can be obtained from
one number.

HEAD

HEAD is the name of the latest revision in the repository. It can be used in subversion rather than the
latest revision number.

BASE

BASE is the name of the revision upon which the working copy is based. (BASE can be different from
HEAD if another user committed to the repository after the most recent update to the working copy.)

trunk

The trunk is the directory in the repository where the main development of a project occurs. A typical
layout of a repository is:

project
 /trunk
 /branches
 /branch1
 /branch2

The project files are stored in the trunk. The branches are used in some situations for convenience:
we shall not need to use branches in this course but they are discussed in a little more detail later on.

If subversion gives an error message about not being able to find an external editor then you need to set
this in the subversion config file (likely on OSX, less likely under linux). To do this open the subversion
configuration file (~/.subversion/config) and find the line which start "# editor-cmd =". Change the line to
"editor-cmd = vim" (or the editor of your choice).

Commands
All subversion comands start with svn followed by a subcommand. Whilst svn has a brief man page, the
main source of help is provided as a subcommand:

svn help # General help. Lists all subcommands.
svn help checkout # Help on the checkout subcommand.

There are many subcommands. Fortunately only a few are needed on a regular basis. Some options to
the subcommands are useful---please see the help pages for more details.

svn checkout

Check out a copy of the repository from a server. You need to specify the URL of the repository. You
can also (optionally) specify the directory you want to check out into:

svn checkout URL directory_name

svn update

Update the working copy: get new commits from the server.

svn commit

Commit changes in the working copy to the server. Requires a log message to be provided, which
details the changes made. The log message can be provided using the -m option:

svn commit -m "Changes made are:...."

If a log message isn't provided on the command line then subversion opens up a text editor for you to
enter the log message. Enter the log message and save and quit to make the commit.

svn diff

Compare changes between two different versions of the repository. By default svn diff compares the
uncommitted changes to the BASE of the repository (i.e. the state of the repository before you started
making changes). The format of a diff output is not always the easiest to read. A graphical diff
program, whilst slower, is often clearer. One graphical diff program is meld. svn diff will use meld
rather than print to the terminal if the diff-cmd is set to meld in the subversion config file.

svn status

Show the status of the working copy: what files have been changed, added, removed or are unknown
to subversion. There are shown by the symbols M, A, D and ? respectively next to the relevant
filename . (Other statuses are also used, but these are the most common.)

svn log

Show the log messages.

svn revert

Revert the working copy to the BASE version. This undoes all your changes. It can be used to
revert changes in specific files (specified on the command line) or all changes in the directory:

svn revert filename1 filename2 # revert changes to files filename1 and filename2
svn revert * # revert all changes in the current directory.

Subversion can only manage the files it knows about, so you need to tell it about files you want it to
manage (or stop managing).

svn add

Add files to the repository.

svn add file_to_be_added

svn remove

Delete files to the repository.

svn remove file_to_be_removed

This also deletes the files from the working copy. Analogous to the normal rm command.

svn move

Move a file, e.g. to rename the file or to move it to a different directory within the repository.
Analogous to the normal mv command.

An advanced topic (which we won't go into here) is that of branching and merging. Earlier we discussed a
project having a "trunk" i.e. the main development path for the project. A branch is used for a line of
development that proceeds independently of the trunk (but was identical to the trunk at some point in the
past): for instance to perform a major restructuring of a program that might involve stopping the program
from working correctly for some time whilst allowing for bugs to be fixed and colleagues to continue
working on the trunk. Once the development work in the branch has been completed it can be merged
back into the main trunk of the repository.

Local setup
The CMTH/TYC group hosts a subversion server. You all have a repository setup on the server. The
address of your individual repository is https://tyc-svn.cmth.ph.ic.ac.uk/users/username where username
is your college username. For this session you all have read and write access to each others' repositories.
Afterwards the only people with access to your repository will be yourself, myself and Dr. Haynes as your
solutions to programming problems must be submitted via subversion.

The same repository will be used throughout the course rather than having one repository for each
project. This makes the server administration substantially easier but has the downside that the revision id
is a repository property rather than a project property.

To create a place on the server for a new project use the svn mkdir command:

svn mkdir https://tyc-svn.cmth.ph.ic.ac.uk/users/username/project_name/trunk

The project can now be checked out and files added to it as usual:

svn checkout https://tyc-svn.cmth.ph.ic.ac.uk/users/username/project_name/trunk project_name
cd !$
touch f1 f2 f3
svn add f{1,2,3}
svn commit

https://tyc-svn.cmth.ph.ic.ac.uk/users/username

Resources
The subversion project has written an excellent book on using svn (published by O'Reilly) which is
updated regularly and is free online: http://svnbook.red-bean.com/.

Tasks

1. Create a directory in your svn repository.

2. Create and add files to your svn repository.

3. Perform the following tasks (and any others you can think of):

a. Make and commit changes.

b. Make changes and inspect them using the diff command.

c. Revert your changes.

d. Compare the current version to an earlier version.

e. Inspect the commit log.

4. Checkout your repository into another directory. Make a commit from this repository and update the
first directory.

5. [optional] In pairs: check out each other's repository. What happens if you both edit the same file in
different places and then commit? What about if the edits are to the same part of the file? Find out
how to resolve this.

http://svnbook.red-bean.com/

	subversion
	Commands
	Local setup
	Resources

	Tasks

