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Post-HF methods I

We have looked at three kinds of post-Hartree–Fock methods:

Configuration Interaction (CI): Variational. Full CI is exact
but scales exponentially. Truncated CI (e.g. CISD) not
size-consistent.

Coupled-cluster (CC): Also potentially exact. Truncated
methods are size-consistent. CCSD(T) is the method of
choice if you can afford the O(N7) computational cost.

Møller–Plesset Perturbation Theory (MPn): Perturbation
theory starting from HF reference state. Usually only used at
second-order: MP2. Known to diverge. MP2 is the first term
to include correlation (MP0 and MP1 are parts of the HF
energy).
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Post-HF methods II

Practical considerations: CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

All correlated methods require large basis sets with high angular
functions.
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The electron–electron cusp I

Correlation is the description of this kink.
All figures from “Molecular Electronic Structure Theory” by Helgaker,

Jorgensen and Olsen
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The electron–electron cusp II

Principle and partial wave expansions.
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The electron–electron cusp III

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 2
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The electron–electron cusp IV

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 3
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The electron–electron cusp V

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 4
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The electron–electron cusp VI

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 5

These cusps make correlation hard. Not only do the methods scale
poorly with size, but we need rather large basis sets to get sensible
results.
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Density-Functional Theory I

Hohenberg & Kohn (Phys. Rev. B, 136, 864 (1964)):

Theorem

H–K Theorem 1 There is a one-to-one mapping between the
electronic density and the external potential, and hence, the
Hamiltonian:

ρ(r) ⇐⇒ H

Proof is by reductio ad absurdum.
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Density-Functional Theory II

Consider the Hamiltonian with the electron–nuclear potential vext
(this is sometimes called the external potential):

H = −1

2

N∑
i

∇2
i +

∑
i<j

1

rij
+

N∑
i

vext(ri) (1)

Let v 1
ext and v 2

ext arise from the same density.

We therefore have two Hamiltonians H1 and H2 with the
same ground state density but with different ground state
wavefunctions, Ψ1 and Ψ2.
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Density-Functional Theory III

Consider H1: The variational principle states that

E 1
0 < 〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉

= E 2
0 + 〈Ψ2|v 1

ext − v 2
ext|Ψ2〉

= E 2
0 +

∫
ρ(r)

[
v 1
ext(r)− v2

ext(r)
]

dr

Similarly E 2
0 < E 1

0 +
∫
ρ(r)

[
v 2
ext(r)− v1

ext(r)
]

dr

Adding the inequalities:

E 1
0 + E 2

0 < E 2
0 + E 1

0 →←

Hence ρ(r) ⇐⇒ H
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Density-Functional Theory IV

E. Bright Wilson’s observation: To know the Hamiltonian we need
to know the number of electrons and position and charge of the
nuclei. These can be obtained from the density:

N =
∫
ρ(r)dr

Position and charge of nuclei can be obtained from the cusps:

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

So ρ completely determines the Hamiltonian and therefore the
ground-state energy (and also all excited state energies!).
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Density-Functional Theory V

What the Hohenberg–Kohn theorem allows us to do is (formally)
write the energy as a functional of the density.

E = E [ρ] = T [ρ] + Vee[ρ] + Ven[ρ]

= F [ρ] +

∫
ρ(r)vext(r)dr

This leads to the second Hohenberg–Kohn theorem:

Theorem

H–K Theorem 2 If ρ̃ is an approximate density then

E [ρ] ≤ E [ρ̃]
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Density-Functional Theory VI

This is how the theorem arises:

From the previous theorem, we know that ρ̃ determines its
own unique potential ṽext, the Hamiltonian H̃, and the ground
state wavefunction Ψ̃.

We can now use this wavefunction Ψ̃ as a trial wavefunction
for a Hamiltonian H with external potential vext:

Using the variational principle

E0 ≡ E [ρ] ≤ 〈Ψ̃|H|Ψ̃〉 = F [ρ̃] +

∫
ρ̃(r)vext(r)dr = E[ρ̃]

That is for any trial density ρ̃, E [ρ] ≤ E [ρ̃].

So in principle we can search over all N-electron densities to find
the one that leads to the lowest energy.
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Density-Functional Theory VII

This is all simpler than it may look. Consider the minimization
procedure in two steps:

E0 = min
Ψ
〈Ψ|T̂ + V̂ee +

N∑
i

v(ri)|Ψ〉

= min
ρ

(
min
Ψ→ρ
〈Ψ|T̂ + V̂ee +

N∑
i

v(ri)|Ψ〉

)

= min
ρ

(
min
Ψ→ρ

[
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
v(r)ρ(r)dr

])

In the second line the inner minimization is constraint to all
wavefunctions that give ρ(r), while in the outer minimization this
condition is removed by searching all ρ(r).
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Density-Functional Theory VIII

The first term in the square brackets is the functional F [ρ],
therefore

E0 = min
ρ

(
F [ρ] +

∫
v(r)ρ(r)dr

)
= min

ρ
E [ρ]

where

E [ρ] = F [ρ] +

∫
v(r)ρ(r)dr

This double-step minimization is illustrated in the following figure
(from Parr and Yang, Density-Functional Theory).
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Density-Functional Theory IX
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Density-Functional Theory X

In practice searching over all N-electron densities is next to
impossible. How do we do this? If we are given a trial N-electron
density ρ̃, how can we obtain the corresponding external potential
ṽext? This can be done for a one or two electron system (Ex.
How?) but not in general.
All this would have been a curiosity had it not been for a paper by
Kohn & Sham published in 1965 (Phys. Rev. A 140, 1133) which
gave us what we now know as Kohn–Sham DFT.
But before getting to Kohn–Sham DFT, let’s look at a couple of
other attempts at formulating a density-functional theory...
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Thomas–Fermi Theory I

In 1927 Enrico Fermi and Llewellyn Thomas developed the first
true density functional for the energy. In 1928, P. A. M. Dirac
modified the TF model to include the effects of exchange. This
TFD model turned out to be poorer than the original model. As
we shall see, the beauty of the TF/TFD models is their simplicity.
However, they proved to be not so accurate, and, in particular,
could not describe chemical bonding. So what’s their use? These
models, as precursors to modern DFT, contain ideas that will form
the basis of the density functionals we use today.
We will develop a quick and elegant derivation of the TFD model
here, at the expense of mathematical rigour.
First we re-visit uniform scaling of the electronic coordinates...
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Thomas–Fermi Theory II

Theorem

Under uniform scaling of the electronic coordinates:

ri → αri ,

ψ(ri )→ ψα(ri ) = α3N/2ψ(αri ).

This form of the scaling is needed to ensure normalization.

Q: Show that ρα(r) = α3ρ(αr).

We had proved the identities:

〈ψα|T |ψα〉 = α2〈ψ|T |ψ〉
〈ψα|V (R)|ψα〉 = α〈ψ|V (αR)|ψ〉
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Thomas–Fermi Theory III

Anticipating a DFT-terminology we will define

T [Ψ] = 〈Ψ|T̂ |Ψ〉 ≡ T [ρ]

Vee[Ψ] = 〈Ψ|V̂ee|Ψ〉 ≡ Vee[ρ]

Q: How do we justify terming these functionals of the density?

With this notation, the scaling identities can be written as

T [Ψα] = α2T [Ψ]

Vee[Ψα] = αVee[Ψ]

Alternatively we could write these as functionals of ρ.
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Thomas–Fermi Theory IV

Our task now is to derive and expression for T [ρ]. To do this we
assume that the kinetic energy functional can be written in the
form

T [ρ] =

∫
t(ρ)dr

where t(ρ) is a homogeneous function of the density. That is, t is
of the form t(x) = Axb where b is a real number. Why do we
assume this can be done? Well, we could state it as an ansatz.
But there is another reason why it is possible: it is possible to
make this derivation using ideas from the free-electron gas. We
won’t do this here.
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Thomas–Fermi Theory V

Consider

T [ρα] =

∫
t(ρα(r))dr

=

∫
t(α3ρ(αr))dr

= α−3

∫
t(α3ρ(αr))d(αr)

= α−3

∫
t(α3ρ(r))dr

where, in the last step we have made a change of variables.
But we also have T [ρα] = α2T [ρ], therefore

α−3

∫
t(α3ρ(r))dr = α2

∫
t(ρ(r))dr
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Thomas–Fermi Theory VI

Therefore

t(α3ρ(r)) = α5t(ρ)

or, by substituting α′ = α3 and then dropping the primes,

t(αρ(r)) = α5/3t(ρ)

That is, t is a homogeneous function of degree 5/3 in ρ:
t(ρ) = Aρ5/3.

Therefore, using A = CF ,

T [ρ] = CF

∫
ρ5/3(r)dr

where CF = 3
10 (3π2)2/3 = 2.871 · · · .
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Thomas–Fermi Theory VII

What about the functional Vee[ρ]?
It consists of two parts: Vee[ρ] = J[ρ] + K [ρ]. We already know
the exact form of the Coulomb part:

J[ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2

The exchange energy functional K [ρ], as part of the full
electron–electron energy Vee[ρ], also involves the operator 1/r , so
the two share the same scaling relation, i.e.,

K [ρα] = αK [ρ]
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Thomas–Fermi Theory VIII

We need to find a density functional for this and we do it the same
way as we did the kinetic energy functional: Assume

K [ρ] =

∫
k(ρ(r))dr

where k is a homogeneous function of ρ and use the scaling
relation to find the form of k .

Q:

Show that

K [ρ] = −CX

∫
ρ4/3(r)dr,

where the constant CX = 3
4 ( 3
π )1/3.

Why is this energy defined to be negative?
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Thomas–Fermi Theory IX

Now we define the Thomas–Fermi functional (no exchange in this
one):

ETF[ρ] = T [ρ] + J[ρ] +

∫
ρ(r)vext(r)dr

= CF

∫
ρ5/3(r)dr +

1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 +

∫
ρ(r)vext(r)dr

We minimize ETF[ρ] subject to the condition N =
∫
ρ(r)dr using

the Lagrange multiplier µTF:

δ

[
ETF[ρ]− µTF

(∫
ρ(r)dr−N

)]
= 0
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Thomas–Fermi Theory X

Q:

Show that we get

µTF =
δETF

δρ(r)
=

5

3
CFρ

2/3(r)− φ(r)

where φ(r) = vext(r)−
∫ ρ(r′)
|r−r′|dr′ is the electrostatic potential.

This can be solved (we will not do it) quite easily for atoms.
All Dirac did was to modify the TF functional to include the
exchange functional K [ρ]. This turned out to result in somewhat
worse agreement with the more accurate Hartree–Fock energies.
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Thomas–Fermi Theory XI
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Thomas–Fermi Theory XII

Another problem with TF/TFD theory is that they do not result in
any shell structure. Here’s the density of Argon obtained using
Hartree–Fock and various modifications of the TFD model:
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Hartree–Fock again I

Before getting on with DFT, let’s have another look at
Hartree–Fock, but this time, from a slightly different angle.
The HF energy can be written as

EHF = min
|ΨSD〉→N

〈ΨSD|T̂ + V̂ne + V̂ee|ΨSD〉

= min
|ΨSD〉→N

〈ΨSD|T̂ + vext + V̂ee|ΨSD〉

Here |ΨSD〉 is our Slater determinant that yields an N electron
density. In the second line I have used our notation for the
electron–nuclear potential: the external potential.
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Hartree–Fock again II

This minimization procedure gives rise to an effective Hamiltonian
— the Fock operator:

f HF(i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i) (2)

The HF potential is an effective potential that contains the
effective electron–electron Coulomb and exchange interactions (no
correlation!). To get us ready for Kohn–Sham theory, we will make
a few changes to the above equation.
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Hartree–Fock again III

First of all recognise that the second term in the Fock
operator is just the external potential: vext

Next, split the HF operator into its Coulomb and Exchange
parts. These are usually labeled by ‘J’ and ‘X’, respectively:

vHF = vJ + vX

So our Fock operator is now written as

f HF(i) = −1

2
∇2

i + vext(i) + vJ(i) + vX(i) (3)
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Hartree–Fock again IV

In some sense we can say that the HF ground state energy is a
functional of the density and can be written as

EHF[ρHF] = TS[ρHF]+J[ρHF]+EHF
x [ρHF]+

∫
ρHF(r)vext(r)dr (4)

where the non-interacting Kinetic energy functional is

TS[ρHF] = −1

2

N∑
i=1

〈χi |∇2
i |χi 〉 (5)

which is not strictly a functional of the density, but since the
density is implicitly a functional of the orbitals we can still think of
the KE functional as a density functional.
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Hartree–Fock again V

The Coulomb energy functional is defined as

J[ρHF] =
1

2

∫∫
ρHF(r1)ρHF(r2)

r12
dr1dr2 (6)

The exchange energy functional is non-local and is, like the KE
functional, dependent on the HF orbitals:

EHF
x [ρHF] = −

∑
a∈occ

∑
b∈occ

∫∫
dx1dx2χ

∗
a(1)

χ∗b(2)P12χb(2)

r12
χa(1)

(7)
where P12 is the permutation operator.
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Hartree–Fock again VI

Looked at in this way HF theory is a kind of density functional
theory, but one that is not, even in principle, exact (except for
1-electron systems).
In this formulation of HF theory, we define the HF energy as

EHF = min
ρ→|ΨSD〉,N

EHF[ρ]

That is, we minimize the functional EHF[ρ] over all N-electron
densities that arise from a Slater determinant. We need to impose
the N-electron constraint and this is done using Lagrange
multipliers. We minimize the functional:

Ω[ρ] = EHF[ρ]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Hartree–Fock again VII

Since Ω[ρ] really is a functional of the orbitals, we need to perform
the variation over the orbitals and use the chain rule:

δ

δχi (r)
=

δ

δρ(r)

δρ(r)

δχi (r)
(8)

I do not want to get is bogged down with functional derivatives,
but one example of how its done could be illuminating:
First of all, since ρ(r) =

∑N
i=1 χ

∗
i (r)χi(r) we get

δρ(r)

δχ∗i (r)
= χi (r)
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Hartree–Fock again VIII

Now consider the functional derivative of J[ρ]:

δJ[ρ]

δχ∗i (r)
=
δJ[ρ]

δρ(r)

δρ(r)

δχ∗i (r)

=
δ

δρ(r)

[
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′

]
× χi (r)

=

∫
ρ(r′)

|r− r′|
dr′χi(r)

= vJ(r)χi (r)

Do this for all terms and we get back our Fock equation (in a
generalised form).
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Hartree–Fock again IX

Q:

Prove that the variation of

Ω[ρ] = EHF[ρ]−
N∑
i ,j

εij(〈χi |χj〉 − δij)

with respect to χ∗i does lead to the Fock equations:

f |χi 〉 =
∑
j

εji |χj〉

This is the non-canonical form of the Fock equations. As we
saw in the Hartree–Fock lectures, with a suitable unitrary trans-
formation we can recover the canonical form:

f |χi 〉 = εi |χi 〉
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Kohn–Sham DFT I

From the two Hohenberg–Kohn theorems we know we can write
the ground-state energy as a functional of the density:

E [ρ] = T [ρ] + Vee[ρ] +

∫
vext(r)ρ(r)dr

The problem is that we do not know how to define the first two
functionals.
We have seen that Thomas–Fermi theory gives us an expression for
T [ρ], but we also saw that this expression was too approximate to
be of use for atomic/molecular systems as it does not give rise to
the shell structure or chemical bonding.



Summary: Correlation Correlation cusp DFT Thomas–Fermi–Dirac HF-revisited KS-DFT Functionals

Kohn–Sham DFT II

In 1965 Walter Kohn & Lu Sham put DFT on a practical footing
through what is now known as Kohn–Sham DFT. The began by
postulating the existence of a non-interacting system with external
potential vS that yields the exact density. That is

H =
∑
i

(
−1

2
∇2

i + vS(i)

)
has a ground state single determinant solution with density ρ.

This is a non-interating system so we can solve it just as we solved
the Fock Hamiltonian. The results will be a set of orbitals {χi}
and orbital eigenvalues {εi}.
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Kohn–Sham DFT III

Just as we wrote the kinetic energy in Hartree–Foct, we write the
kinetic energy of this Kohn–Sham non-interacting system:

TS[ρ] =
N∑
i

−1

2
〈χi |∇2|χi 〉

What Kohn & Sham did was to state that this non-interacting
kinetic energy functional TS[ρ] could be considered a good
approximation to the true functional T [ρ].
Impotantly, they knew (from Hartree–Fock theory) that TS[ρ], as
it depended on the orbitals, could describe the molecular shell
structure.
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Kohn–Sham DFT IV

Using TS[ρ], we can write the Hohenberg–Kohn functional as

F [ρ] = T [ρ] + Vee[ρ]

= TS[ρ] + J[ρ] + Exc[ρ]

where this eXchange-Correlation functional is defined as

Exc[ρ] = (T [ρ]− TS[ρ])− (Vee[ρ]− J[ρ])

The idea here is that we have defined as much as we could define
(TS[ρ] and J[ρ]), and have swept the rest of the energy into the
unknown functional Exc[ρ].
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Kohn–Sham DFT V

So we get the following functional for the ground state energy:

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr (9)

Compare this to what we had for the Hartree–Fock functional:

EHF[ρHF] = TS[ρHF] + J[ρHF] + EHF
x [ρHF] +

∫
ρHF(r)vext(r)dr

The difference between the two is that EHF[ρHF] is necessarily
approximate while E [ρ] is exact, albeit, in principal.
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Kohn–Sham DFT VI

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr (10)

must be minimized subject to the orthonormality constraints

〈χi |χj〉 = δij .

As before, we include these constraints using Lagrange multipliers
and minimize

Ω[ρ] = E [ρ]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Kohn–Sham DFT VII

This gives us the Kohn–Sham equations after the usual occupied
orbital rotation to make the eigenvalue matrix εij diagonal:(

−1

2
∇2

i + vS(r)

)
χi = εiχi

where the effective potential is defined as

vS(r) = vJ(r) + vext(r) + vxc(r)
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Kohn–Sham DFT VIII

The various potentials that enter this expression are:

vJ: The Coulomb potential defined as:

vJ(r) =

∫
ρ(r′)

|r− r′|
dr′

vext: The external potential, i.e., the electron-nuclear
potential:

vext(r) = −
∑
α

Zα
|r− Rα|
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Kohn–Sham DFT IX

vxc: The exchange-correlation potential which is defined
through the exchange-correlation energy Exc[ρ] as:

vxc(r) =
δExc[ρ]

δρ

Let’s see how these potentials arise.
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Kohn–Sham DFT X

Since Ω[ρ] really is a functional of the orbitals, we need to perform
the variation over the orbitals and use the chain rule:

δ

δχi (r)
=

δ

δρ(r)

δρ(r)

δχi (r)
(11)

First of all, since ρ(r) =
∑N

i=1 χ
∗
i (r)χi(r) we get

δρ(r)

δχ∗i (r)
= χi (r)



Summary: Correlation Correlation cusp DFT Thomas–Fermi–Dirac HF-revisited KS-DFT Functionals

Kohn–Sham DFT XI

Now consider the functional derivative of J[ρ]:

δJ[ρ]

δχ∗i (r)
=
δJ[ρ]

δρ(r)

δρ(r)

δχ∗i (r)

=
δ

δρ(r)

[
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′

]
× χi (r)

=

∫
ρ(r′)

|r− r′|
dr′χi(r)

= vJ(r)χi (r)
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Kohn–Sham DFT XII

Now consider the functional derivative of Eext[ρ] =
∫

vext(r)ρ(r)dr:

δEext[ρ]

δχ∗i (r)
=
δEext[ρ]

δρ(r)

δρ(r)

δχ∗i (r)

=
δ

δρ(r)

[∫
vext(r)ρ(r)dr

]
× χi (r)

= vext(r)χi (r)

We cannot evaluate the functional derivative of Exc[ρ] as we still
do not know the form of this functional. So we simply define:

vxc(r) =
δExc[ρ]

δρ
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Kohn–Sham DFT XIII

So the Kohn–Sham non-interacting potential is defined as:

vS(r) = vJ(r) + vext(r) + vxc(r)

=

∫
ρ(r′)

|r− r′|
dr′ + vext(r) +

δExc[ρ]

δρ

We solve the 1-electron Kohn–Sham equations self-consistently:

k(1)χi (1) =

(
−1

2
∇2

1 + vS(1)

)
χi (1) = εiχi (1)

where we have defined the Kohn–Sham operator k(1).
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Kohn–Sham DFT XIV

Once we have the orbitals χi , we can evaluate the energy using

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr
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Kohn–Sham DFT XV

or, equivalently, we use the results we derived when studying
Hartree–Fock to realise that∑

i

εi = 〈Ψ0|
∑
i

k(i)|Ψ0〉

= 〈Ψ0|
∑
i

(
−1

2
∇2

i + vS(i)

)
|Ψ0〉

= 〈Ψ0|
∑
i

−1

2
∇2

i |Ψ0〉+ 〈Ψ0|
∑
i

vS(i)|Ψ0〉

= TS[ρ] + 〈Ψ0|
∑
i

vJ(i) + vext(i) + vxc(i)|Ψ0〉

= TS[ρ] + 2J[ρ] +

∫
vext(r)ρ(r)dr +

∫
vxc(r)ρ(r)dr
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Kohn–Sham DFT XVI

Using this, we can write an expression for the kinetic energy
functional:

TS[ρ] =
∑
i

εi − 2J[ρ]−
∫

vext(r)ρ(r)dr−
∫

vxc(r)ρ(r)dr

And then we can write the total energy:

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr

=
∑
i

εi − J[ρ] + Exc[ρ]−
∫

vxc(r)ρ(r)dr
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Kohn–Sham DFT XVII

In a sense, what Kohn & Sham did was to sweep all the
unknowns under the rug. But they did this intelligently as they
had a good idea of how to approximate the unknown bits: the
exchange-correlation energy and its functional derivative.

Also, they knew that their formalism was in principle exact as
they had proved various theorems to that effect.

It turned out that their proofs were not mathematically sound,
but this was fixed by others.

The rest of the DFT story is how we find the
exchange-correlation functional Exc[ρ].
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Density Functionals I

Exchange correlation functionals are usually written in the form

Exc[ρ] =

∫
ρ(r)εxc(ρ(r),∇ρ(r), · · ·)dr (12)

where εxc(ρ(r),∇ρ(r), · · ·) can be regarded as the
exchange-correlation density.
We usually split the exchange-correlation density into its exchange
and correlation parts:

εxc(ρ(r),∇ρ(r), · · ·) = εx(ρ(r),∇ρ(r), · · ·) + εc(ρ(r),∇ρ(r), · · ·)
(13)

This separation is convenient for we can then think of using
well-understood approximations for each of these.



Summary: Correlation Correlation cusp DFT Thomas–Fermi–Dirac HF-revisited KS-DFT Functionals

LDA I

The first of the many functionals is the local density approximation
or LDA. In this approximation the exchange-correlation density
depends on the electron density alone (no dependence on gradients
etc.):

Exc[ρ] =

∫
ρ(r)εLDA

xc (ρ(r))dr (14)

The Slater approximation is used for the exchange-energy density:

εSx(ρ(r)) = −3

4

(
3ρ(r)

π

)3/2

Using this we get the Slater exchange functional:

ES
x [ρ] = −3

4

(
3

π

)3/2 ∫
ρ4/3(r)dr = −Cx

∫
ρ4/3(r)dr
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LDA II

Paired with this is a correlation functional parameterized on very
accurate quantum Monte-Carlo (QMC) calculations of the energy
of the homogeneous free electron gas as a function of density.
There are a variety of correlation parameterizations. These differ
by the choice of QMC energies used or by the interpolation scheme
used in the parameterization (the QMC energies are calculated at a
set of densities so some scheme is required to interpolate to all
densities).
Common choices of the correlation functional are:

PW91c The Perdew–Wang (1992) parameterization (called
pw91lda in NWChem.

VWN The Voski–Wilk–Nusair (1980) parameterization.

So what is called the LDA translates into a combination of the
Slater exchange functional and one of these correlation functionals.
The actual choice will vary with program.
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LDA III

73

ε 2(ρ )(r )

ε 1(ρ( ))rxc

xc

from homogeneous
electron gas

from inhomogeneous
system

∫= rdrrE xc
LDA
XC

!!!

))(()(][ ρερρ

1ρ( )r

2ρ( )r

)r(

)r()r(
!

!!

ρ
ρ−ρ

=ξ βα
. (6-16)

ξ attains values from 0 (spin compensated) to 1 (fully spin polarized, i. e., all electrons
have only one kind of spin). For details see in particular Appendix E of Parr and Yang,
1989. In the following we do not differentiate between the local and the local spin-density
approximation and use the abbreviation LDA for both, unless otherwise noted.

How do we interpret the LDA for the exchange-correlation functional? Let us consider
the general case of an open-shell atom or molecule. At a certain position r

!

 in this system
we have the corresponding spin densities )r(

!

αρ  and )r(
!

βρ . In the local spin-density ap-
proximation we now take these densities and insert them into equation (6-15) obtaining

)r(EXC
!

. Thus, we associate with the densities )r(
!

αρ  and )r(
!

βρ  the exchange and corre-
lation energies and potentials that a homogeneous electron gas of equal, but constant den-
sity and the same spin polarization ξ would have. This is now repeated for each point in
space and the individual contributions are summed up (integrated) as schematically indi-
cated in Figure 6-2. Obviously, this approximation hinges on the assumption that the ex-
change-correlation potentials depend only on the local values of )r(

!

αρ  and )r(
!

βρ .
This is a very drastic approximation since, after all, the density in our actual system is

certainly anything but constant and does not even come close to the situation characteristic
of the uniform electron gas. As a consequence, one might wonder whether results obtained
with such a crude model will be of any value at all. Somewhat surprisingly then, experience
tells us that the local (spin) density approximation is actually not that bad, but rather deliv-

Figure 6-2. The local density approximation.

6.4  The Local Density and Local Spin-Density Approximations

1(r )ρ
2(r )ρ xc 1( (r ))ε ρ

xc 2( (r ))ε ρ

LDA
XC xcE [ ] (r) ( (r)) drρ = ρ ε ρ∫ ! ! !

From Koch & Holthausen A Chemist’s Guide to density Functional Theory

(2001).
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LDA IV

Generalization to open-shell systems (local spin-density
approximation (LSD)): the exchange-correlation density depends
on the spin-up and spin-down densities:

Exc[ρα, ρβ] =

∫
ρ(r)εLDA

xc (ρα(r), ρβ(r))dr (15)

GOOD LDA is better than HF. Good equilibrium geometries,
harmonic frequencies.

BAD Energetics very poor. Errors in atomization energies 36
kcal/mol. (HF has errors of 78 kcal/mol on same set of
molecules)
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GGA I

In the generalized gradient approximations the exchange-correlation
density is dependent on the density and its gradient.

Exc[ρ] =

∫
ρ(r)εGGA

xc (ρ(r),∇ρ(r))dr

As before, we split the exchange-correlation density into its
exchange and correlation parts:

εGGA
xc (ρ(r),∇ρ(r)) = εGGA

x (ρ(r),∇ρ(r)) + εGGA
c (ρ(r),∇ρ(r))

The exchange part of all GGAs takes the form

EGGA
x [ρ] =

∫
ρ(r)εLDA

x (ρ(r))Fx(s)dr



Summary: Correlation Correlation cusp DFT Thomas–Fermi–Dirac HF-revisited KS-DFT Functionals

GGA II

F x(s) is sometimes called the enhancement factor and is written
as a function of the reduced density gradient defined as

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
.

Note that in general all quantities will depend on spin.

This definition is used so as to make s dimensionless (Q: Show
this!) and means that s will be large when the gradient of the
density is large (where the LDA should fail) and also where the
density is small (in the region of the density tails).
Two of the common exchange enhancement factors are
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GGA III

Becke, 1988 (B88)

FB88
x (s) = 1− βs2

1 + 6βs sinh−1 s

Becke fitted the parameter β = 0.0042 to reproduce known
exchange energies of rare gas atoms. This particular form for
the enhancement factor was chosen to obey a few exact
relations.

Perdew, Burke & Ernzerhof, 1996 (PBE)

FPBE
x (s) = 1 + κ− κ

1− µs2/κ

In this functional all parameters were obtained theoretically.
κ = 0.804. Most physcists use this exchange functional.
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Hybrid Functionals I

The exchange contribution to the energy is much larger than the
correlation energy (which is why HF is not too bad!). So why not
use the best exchange energy we have — from HF, usually termed
exact exchange in this context — and combine it with the best
correlation funtional available:

Exc[ρ] = EHF
x [ρ] + Ec[ρ]

This turns out to be better than HF, but much worse than the
GGAs.
The precise reason for this somewhat poor behaviour has to do with the nature

of the exchange hole. The exact x-hole is local, but the HF x-hole is non-local.

So it must be corrected by a non-local correlation hole, but the DFT

correlation hole is also local and so cannot correct the HF x-hole. This is all

very interesting but also very technical.
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Hybrid Functionals II

In 1993, Becke proposed a three-parameter semi-empirical
functional that cured this problem. The general idea is to mix
some fraction of HF exchange with DFT exchange:

Ehybrid
xc = aEHF

x + (1− a)EGGA
x + EGGA

c

The B3LYP is the most widely used of these and is a slight
modification of Becke’s 1993 proposal made the following year by
Stephens and others:

EB3LYP
xc =ESVWN

xc + a0(EHF
x − ES

x ) + ax(EB88
x − ES

x )

+ ac(ELYP
c − EVWN

c )

A better choice (in my opinion) is the PBE0 functional (sometimes called

PBE1PBE) which mixes PBE with 20% HF exchange.
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Jacob’s Ladder I

John Perdew has summarised the state of DFT using the Biblical
picture of Jacob’s Ladder: At the base we have the LDA and at
the top, in the heaven of chemical accuracy (interesting concept -
what is Physical Accuracy?) we have some unknown functional.
Here’s the whole Ladder...
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Jacob’s Ladder II

CHEMICAL HEAVEN
1 corr-hyper-GGA: Modifies the hyper-GGAs by including

correlation through range-separation. This is currently done at
the RPA level.

2 hyper-GGA: Adds exact exchange using range-separation.
Leads to functionals that can fix (part of) the charge-transfer
problem of most DFT functionals. CamB3LYP

3 meta-GGA: ρ,∇ρ,∇2ρ, τ , here τ = 1
2

∑
a∈occ |∇χa|2 is the

Kohn–Sham orbital kinetic energy density. TPSS

4 GGA: ρ,∇ρ. PBE

5 LDA,LSD: ρ

INACCURATE HELL
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