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Many electron basis I

Hartree–Fock is an approximation that is exact only for a
one-electron system.

Q:

Show that for a one-electron system the Fock operator is ex-
actly the same as the exact one-electron Hamiltonian. Hence,
the HF solutions are exact. Is this something you would have
expected?

We know that the Hartree–Fock ground state energy E0 will be an
upper bound to the exact ground-state energy E0. The difference

Ecorr = E0 − E0

is called the correlation energy. This energy is often large enough
that we cannot neglect it. The question now is how do we
calculate Ecorr?
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Many electron basis II

To calculate Ecorr we need to use what are known as
post-Hartree–Fock methods. Amongst the main-stream approaches
are

Configuration Interaction (CI): Create a linear expansion of
determinants created from the HF ground-state determinant
by exciting electrons into the virtual space.

Perturbation Theory (MPn): Develop a perturbative
expansion starting with the Hartree–Fock ground state as the
zeroth order solution.

Coupled-cluster methods (CC): Like CI, but with
infinite-order summations.

Quantum Montecarlo (QMC): Variational Montecarlo
(VMC), Diffusion Montecarlo (DMC), full configuration
interaction quantum montecarlo (FCIQMC).
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Many electron basis III

Density-functional theory (DFT): Reformulate the problem
in terms of the electron density.

Density matrix theory: Variant of the above that recognises
that uses the two-electron density.

Greens function methods.....

Here we will look at CI, CC, MP2 and (finally) DFT. The other
methods require another course altogether!
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Configuration Interaction I

CI: Increase the flexibility in the wavefunction by including in
addition the the HF ground state, excited states.
Q: What are excited states and how to we form them?
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Configuration Interaction II

1

2

n

n + 1

n + m

Figure : Left: HF ground state configuration. Right: An example of an
excited state configuration. If there are n occupied levels (2 electrons
each, so N = 2n) and m virtual (un-occupied) levels, in how many ways
can we form excited states? Each of these states will correspond to a
Slater determinant.
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Configuration Interaction III

The Full CI (FCI) wavefunction:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

= c0|Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

where electrons are excited from the occupied orbitals i , j , k , · · · to
the virtual orbitals a, b, c , · · · .
Points to note about CI:

Because of Brillouin’s theorem, there is no (direct) coupling
between the HF ground state |Ψ0〉 and the single excitations.

There is no coupling between |Ψ0〉 and triples, quadruples, etc.
Similarly, singles do not mix with quadruples, quintuples etc.

Q: Why?
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Configuration Interaction IV

The double excitations have the largest effect on the
correlation energy because they mix directly with the HF g.s.

Next in importance are the quadruples.

Full CI scales exponentially with system size, so it is typically
limited to small systems for reference calculations only.

Q:
To see why the scaling is so extreme calculate the number of
single determinants in the CI expansion.
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Configuration Interaction V

CI expansion in intermediate normalized form (c0 = 1):

|Ψ〉 = |Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

As defined |Ψ〉 is not normalized. (To see this calculate 〈Ψ|Ψ〉.)
Notice that this form satisfies the intermediate normalization
condition

〈Ψ0|Ψ〉 = 1

Now we have

H|Ψ〉 = E0|Ψ〉
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Configuration Interaction VI

rewrite this as

(H − E0)|Ψ〉 = (E0 − E0)|Ψ〉 = Ecorr|Ψ〉

Taking the inner product with 〈Ψ0| we get

〈Ψ0|(H − E0)|Ψ〉 = Ecorr〈Ψ0|Ψ〉 = Ecorr

Now stick in the expansion for the CI wavefunction |Ψ〉 into this to
get:

Ecorr = 〈Ψ0|(H − E0)|Ψ〉 =
∑

i<j ,a<b

cab
ij 〈Ψ0|H|Ψab

ij 〉

Q: Derive this expression for the correlation energy.
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Configuration Interaction VII

So we have an expression for the correlation energy in CI and it
seems to depend on the coefficients of the doubly excited states
only.

Q:

How can this be so? Does this mean that we do not need the
other terms in the CI expansion? Read Szabo & Ostlund Sec.
4.1.1 to find an answer to this puzzle or, better yet, work it our
yourself.
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Configuration Interaction VIII

FCI:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

= c0|Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

GOOD This expansion will lead to the exact energy within the
basis set used.

BAD There are too many determinants!
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Configuration Interaction IX

If there are M spin orbitals and N electrons (N < M) then how
many n-tuple excited determinants will we have?
We have N occupied SOs and M − N virtual SOs. We can
select n electrons from the occupied set in N!/(n!(N − n)!)
ways. These n electrons can be placed in the virtual space in
(M − N)!/(n!(M − N − n)!) ways. So the total number of
n-tuple excited determinants is

N!(M − N)!

(n!)2(N − n)!(M − N − n)!

which gets large very quickly. For large M,N and n you can use
Stirling’s approximation to show that the number of exctited
determinants scales exponentially.
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Configuration Interaction X

One solution to the problem is to use only some of the many
determinants. For example we could use only double excitations.
This leads to the CID method.

|ΨCID〉 = |Ψ0〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉

= |Ψ0〉+ cD |D〉

BAD This theory, like all truncated CI methods, is not size
extensive.
Size-extensivity: If E (N) is the energy of N non-interacting
identical systems then a method is size-extensive if
E (N) = N × E (1).
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Configuration Interaction XI

Q: Is CID size-extensive?
If T̂2 is an operator that creates all double excitations, then we can
write the CID wavefunction as

|ΨCID〉 = |Ψ0〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉

= |Ψ0〉+ cD |D〉
= (1 + T̂2)|Ψ0〉
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Configuration Interaction XII

The CID wavefunction for each of two identical non-interacting
systems will be of that form, so the combined wavefunction will be

|ΨCID
A 〉|ΨCID

B 〉 = (1 + T̂2(A))|ΨA
0 〉(1 + T̂2(B))|ΨB

0 〉
=(1 + T̂2(A) + T̂2(B) + T̂2(A)T̂2(B))|ΨA

0 〉|ΨB
0 〉

The last excitation term is a quadruple excitation so it will not be
present in the CID wavefunction for the combined A and B
systems. Therefore

ECID(AB) 6= ECID(A) + ECID(B).
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CISD: Examples I

All figures from: Molecular Electronic Structure Theory by Helgaker et al..
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CISD: Examples II
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CISD: Examples III
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Coupled-cluster Theory I

The problem of truncated CI methods is severe enough that using
them is very problematic. A resolution to the problem is the class
of coupled-cluster theories. In these the wavefunction is defined as:

|ΨCC〉 = exp(T̂)|Ψ0〉

where T̂ is an appropriate excitation operator.
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Coupled-cluster Theory II

For example, in CCD theory we use T̂2 as the excitation operator.
This gives:

|ΨCCD〉 = exp(T̂2)|Ψ0〉

= (1 + T̂2 +
1

2!
T̂2T̂2 + · · · )|Ψ0〉

The first two terms give us CID theory. The rest are needed to
make CCD size-extensive:

exp(T̂2(A))|ΨA
0 〉 × exp(T̂2(B))|ΨB

0 〉 = exp(T̂2(A) + T̂2(B))|ΨA
0 〉|ΨB

0 〉
≡ exp(T̂2(AB))|ΨA

0 〉|ΨB
0 〉
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Coupled-cluster Theory III

GOOD CC theories can be systematically improved.

GOOD CCSD(T) is a very accurate theory. Here single and
double excitations are included as described above and triple
excitations are included through a perturbative treatment.

GOOD Size-extensive.

BAD Computationally very expensive: CCSD(T) scales as
O(N7). So double the system size and the calculation costs
128 times more.

BAD (kind of!) These are single-determinant theories as
described. If the system is multi-configurational (more than
one state contributing dominantly) the standard CC methods
are not appropriate.



Introduction CI CC MBPT Errors Summary Cost and basis sets Correlation cusp

Integrals needed for MBPT I

Doubly excited states:
Ψab

ij = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · ·χj−1χbχj+1 · · · }

〈Ψab
ij |
∑
kl

1

rkl
|Ψ〉 = (ai |bj)− (aj |bi)

As there is contribution from the one-electron part we have

〈Ψab
ij |H|Ψ〉 = (ai |bj)− (aj |bi)
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Møller–Plesset Perturbation Theory I

The HF single-determinant wavefunction is not an eigenstate of
the Hamiltonian:

H|Ψ0〉 6= E0|Ψ0〉.

But it is an exact eigenstate of the Hartree–Fock Hamiltonian

H0 =
N∑
i

f (i)

Q: Show that it is. And show that the eigenvalue is E
(0)
0 =

∑
i εi .
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Møller–Plesset Perturbation Theory II

Now we can write H = H0 + V, where V is the fluctuation
operator defined as

V = H− H0

=
∑
i ,j>i

1

rij
−
∑
i

vHF(i).

That is, V is the difference in the exact two-electron interaction
operator and the approximate HF operator.
We can treate V as a perturbation to H0 and expand the energy
using Raleigh–Schrödinger perturbation theory:
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Møller–Plesset Perturbation Theory III

Split the Hamiltonian into two parts:

H = H0 + λV

where H0 is a Hamiltonian which we know how to solve and V
contains that troublesome parts. We expect V to be a
perturbation so it must be small in some sense.
λ is a complex number that will be 1 for the physical solution.

Let the solutions of H0 be:

H0Ψ
(0)
i = E

(0)
i Ψ

(0)
i

Here the ‘0’ indicates that these eigenvalues and
eigenfunctions are of zeroth-order in the perturbation V. We
will use the short-form:

|Ψ(0)
i 〉 ≡ |i〉
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Møller–Plesset Perturbation Theory IV

Express the solutions of H in a power-series:

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + · · · =

∑
n

λnΨ
(n)
i

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · =

∑
n

λnE
(n)
i

Energies can be calculated by collecting terms at various
orders:

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 = 〈i |H0|i〉

E
(1)
i = 〈Ψ(0)

i |V|Ψ
(0)
i 〉 = 〈i |V|i〉

E
(2)
i = 〈Ψ(0)

i |V|Ψ
(1)
i 〉
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Møller–Plesset Perturbation Theory V

etc. for higher order terms.

The first-order correction to the wavefunction is given by

|Ψ(1)
i 〉 =

∑
n 6=0

|n〉〈n|V|i〉
E

(0)
i − E

(0)
n

So we get

E
(2)
i =

∑
n 6=0

|〈n|V|i〉|2

E
(0)
i − E

(0)
n

This is all we need to derive the experession for MP2.

Note: We still have not decided what the excited states are.
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Møller–Plesset Perturbation Theory VI

Many-body perturbation theory (MBPT) starts from Hartree–Fock
theory:

H0 =
N∑
i=1

f (i) =
n∑

i=1

(
h(i) + vHF(i)

)
(1)

where h(i) = −1
2∇

2
i −

∑
α

Zα
riα

and

V =
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

vHF(i) (2)

Unlike vHF, the perturbation V is a 2-electron operator.
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Møller–Plesset Perturbation Theory VII

MBPT energy at λ0:

E
(0)
0 = 〈0|F|0〉 =

∑
a∈occ

εa

At first-order we get:

Q: Show that E
(1)
0 = 〈Ψ0|V |Ψ0〉 = −1

2

∑
ij〈ij ||ij〉

The sum of E
(0)
0 and E

(1)
0 is just the Hartree–Fock ground state

energy ( something we saw in the last lecture):

EHF = E
(0)
0 + E

(1)
0 (3)

This means that we need to get to at least second-order in
perturbation theory to go beyond the Hartree–Fock description.
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Møller–Plesset Perturbation Theory VIII

At second order, we have

E
(2)
0 =

∑
n 6=0

|〈n|V|0〉|2

E
(0)
0 − E

(0)
n

We will take state |0〉 to be the HF g.s., i.e., |0〉 = |Ψ0〉. But what
about the excited states |n〉?

Can they be single excitations: |Ψa
i 〉? To see why not evaluate

the matrix element 〈Ψa
i |V|Ψ0〉.

They cannot be triple or higher excitations as matrix elements
of these with the HF g.s. are zero. Why?

So they have to be double excitations: |Ψab
ij 〉.
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Møller–Plesset Perturbation Theory IX

Q:

Show the following results:

H0|Ψab
ij 〉 = (E

(0)
0 − (εi + εj − εa − εb))|Ψab

ij 〉

〈Ψab
ij |V|Ψ0〉 = 〈ij ||ab〉

We therefore get the second-order MBPT energy expression:

E
(2)
0 =

occ∑
i<j

vir∑
a>b

[〈ij ||ab〉]2

εa + εb − εi − εj
(4)

This expression is termed as MBPT2 or MP2. The latter name
comes from the other name for this kind of perturbation theory:
Møller–Plesset perturbation theory.



Introduction CI CC MBPT Errors Summary Cost and basis sets Correlation cusp

Møller–Plesset Perturbation Theory X

BAD A problem with Møller–Plesset perturbation theory: it
diverges! See Olsen et al. J. Chem. Phys. 112, 9736 (2000)
for details. We now rarely go beyond MP2 in practical
calculations.

GOOD MP2 contains correlation.

BAD But not enough correlation. Problems with systems with
small HOMO-LUMO gaps (band gap — HOMO is highest
occupied MO and LUMO is lowest unoccupied MO).

GOOD (kind of!) It has a computational cost of O(N5). I.e.,
double the system in size and it will cost 32 times more
computational power.

GOOD MBPT is size-consistent



Introduction CI CC MBPT Errors Summary Cost and basis sets Correlation cusp

Apparent and intrinsic errors I
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Apparent and intrinsic errors II
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Apparent and intrinsic errors III
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Apparent and intrinsic errors IV
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Apparent and intrinsic errors V
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Which method and basis? I

The Gold Standard:

CCSD(T) / aug-cc-pVTZ (or larger)

If not, use MP2, but with caution! Or else, use DFT (next lecture).
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Many electron basis I

Practical considerations: CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

All correlated methods require large basis sets with high angular
functions.
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The electron–electron cusp I

Correlation is the description of this kink.
All figures from “Molecular Electronic Structure Theory” by Helgaker,

Jorgensen and Olsen
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The electron–electron cusp II

Principle and partial wave expansions.
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The electron–electron cusp III

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 2
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The electron–electron cusp IV

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 3
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The electron–electron cusp V

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 4
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The electron–electron cusp VI

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 5

These cusps make correlation hard. Not only do the methods scale
poorly with size, but we need rather large basis sets to get sensible
results.
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