
Hückel Theory (tight-binding)

Alston J. Misquitta

Centre for Condensed Matter and Materials Physics
Queen Mary, University of London

February 13, 2019
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Hückel Theory I

Calculations without a computer
When dealing with unsaturated conjugated systems (polyenes,
acenes, graphene) we can use the Hückel approximation to allow
us to perform calculations by hand (or a small computer). This
method relies on the idea of σ − π separability: for a planar acene,
the π orbitals (the pz) are of a different symmetry from the more
tightly bound σ orbitals. The σ orbitals are symmetric under
reflection in the plane of the molecule while the π orbitals change
sign. Hence they do not mix. Consequently we can consider the π
orbitals separately from the σ. In periodic systems this method
goes by the name tight binding.
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We start with the linear variation equations:

Hc = E (c)Sc

and assume that our basis space is orthonormal, i.e., S = I. This
gives

(H− E I) c = 0.

This has nontrivial solutions only if

det |H− E I| = 0
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Now assume a very local form of H:

Hij =


α if i = j

β if i and j neighbours

0 otherwise.

Here α = 〈πi |H|πi 〉 can be regarded as the energy of the πi orbital
and β = 〈πi |H|πj〉 (i and j are neighbouring atoms) can be
regarded as a resonance integral coupling the two π orbitals.

Q:

How can we justify making all resonance integrals the same?
You may think that there should be a dependence on the na-
ture of the C—C bond, i.e., whether it is a single, double or
triple bond. The key here is that this approximation is valid for
delocalised systems in which all C—C bonds are equivalent.
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The idea here is that we solve for the energies εi and calculate the
total (π) energy of the system as

Etot =
∑
i

εi .

Here we have used the conventional notation εi for the energies of
the eigenstates.
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Consider ethylene:
H C C H
we don’t care about hydrogen atoms in the Hückel approximation
so this becomes:

C C
It has only two carbon atoms so our basis set consists of two 2pπ
atomic orbitals. Call these φ1 on carbon 1 and φ2 on carbon 2.
Therefore, the eigenstates will be of the form:

ψi = c1iφ1 + c2iφ2.

Using the Hückel rules we can write the Hamiltonian matrix as:

Hi ,j =

(
α β
β α

)
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The secular equation is

det

∣∣∣∣α− ε β
β α− ε

∣∣∣∣ = 0

which leads to

(α− ε)2 − β2 = 0

leading to the roots:

ε1 = α + β

ε2 = α− β

Substitute these energies in turn back into

(H− E I) c = 0.



Hückel Theory
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which takes the form

c1i (α− εi ) + c2iβ = 0

to get

For ε1: c11 = c12 = c and ψ1 = c(φ1 + φ2).

For ε2: c11 = −c12 and ψ2 = c(φ1 − φ2).

Since we have assumed the φi are orthonormal, the normalization
constant c = 1/

√
2.

Note that since both α and β are negative, ε1 < ε2.
We have solved our first many electron system by hand!
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Now what about butadiene:

C C C C
Show that the secular equation is

det

∣∣∣∣∣∣∣∣
α− ε β 0 0
β α− ε β 0
0 β α− ε β
0 0 β α− ε

∣∣∣∣∣∣∣∣ = 0

and solve for the energies and eigenfunctions.
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