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Overview

H2: The 1-electron basis.

The two-electron basis and the molecular orbitals.

Hartree-Fock solution

CI solution

Desity and density-matrix

Dissociation of H2.
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1-e basis I

The system: Two H-atoms, separated by distance R. We will
consider two cases: R = 1.4 Bohr (equilibrium) and R =∞
(dissociation).
One electron minimal basis:

1sA(r) =
1√
π

exp(−rA)

1sB(r) =
1√
π

exp(−rB)

where rA/rA are distances of electron from nucleus A/B.
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1-e basis II

Symmetry-adapted atomic orbitals:

φ1(r) = 1σg = Ng [1sA(r) + 1sB(r)]

φ2(r) = 1σu = Nu[1sA(r)− 1sB(r)]

where

Ng =
1√

2(1 + S)
and Nu =

1√
2(1− S)

where it can be shown (see Piela, Appendix R):

S =

∫
1sA(r)1sB(r)dr = (1 + R +

1

3
R2) exp(−R).
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1-e basis III

All figures from: Molecular Electronic Structure Theory by Helgaker et al..
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1-e basis IV

N-electron basis:

With two electrons of opposite spins in either of these orbitals we
get two molecular wavefunctions. Both of these are singlet states.

|1Σ+
g (g2)〉 = |1σ2

g〉 = a†1αa
†
1β|vac〉

|1Σ+
g (u2)〉 = |1σ2

u〉 = a†2αa
†
2β|vac〉
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1-e basis V

And with other combinations of spins and orbitals we get two more
classes of molecular wavefunctions. One is a singlet and the other
class of three states is a triplet.

|3Σ+
u 〉 =


a†2αa

†
1α|vac〉

1√
2

(a†2αa
†
1β + a†2βa

†
1α)|vac〉

a†2βa
†
1β|vac〉

|1Σ+
u 〉 =

1√
2

(a†2αa
†
1β − a†2βa

†
1α)|vac〉
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1-e basis VI

What do these term symbols mean?
States are classified as gerade (g , German for ‘even’) if they are
unchanged by inversion through the centre of mass, or unger-
ade (u, German for ‘odd’) if inversion changes the sign.
The total angular momentum of the molecular state is repre-
sented by the central term, in the above case, since we are
dealing with orbitals with l = 0 only, we have L = 0 and this
is represented by the Σ.
The spin multiplicity 2S + 1 of the molecular state is indicated
as a superscript on the left.
And for Σ states only we may additionally classify states as
+ if the wavefunction is unchanged on reflection in the plane
containing the internuclear axis, or − otherwise. The − can
only arise in open-shell Σ states.
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Restricted HF I

See Szabo & Ostlund secs. 2.3.1 and 2.3.5

What is the matrix element: 〈Ψ|H|Ψ〉?
Notation:

H = h(1) + h(2) +
1

r12

= O1 +O2

where the core-Hamiltonians are:

h(1) = −1

2
∇2

1 −
∑
A

ZA

r1A
,

and similarly for h(2). Here A are all the nuclei.
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Restricted HF II

We will show (in class) that:

〈Ψ|O1|Ψ〉 = 〈1|h|1〉+ 〈2|h|2〉
= h11 + h22.

and

〈Ψ|O2|Ψ〉 =

∫
dx1dx2χ

∗
1(x1)χ∗2(x2)

1

r12
χ1(x1)χ2(x2)

−
∫

dx1dx2χ
∗
1(x1)χ∗2(x2)

1

r12
χ2(x1)χ1(x2)

and, defining

〈ij |kl〉 = 〈χiχj |χkχl〉

=

∫
dx1dx2χ

∗
i (x1)χ∗j (x2)

1

r12
χk(x1)χl(x2)
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Restricted HF III

we get

〈Ψ|O2|Ψ〉 = 〈12|12〉 − 〈12|21〉 ≡ 〈12||12〉.

The first term is the Coulomb term and the second the exchange
term. The two may be written compactly as indicated by the last
term.

We now write our single determinant energy — the Hartree–
Fock energy — as:

EHF = 〈Ψ|H|Ψ〉
= 〈1|h|1〉+ 〈2|h|2〉+ 〈12|12〉 − 〈12|21〉.
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Restricted HF IV

Now we evaluate the HF energy for |1Σ+
g (g2)〉.

Here χ1 = φ1α and χ2 = φ1β. We will integrate out the spin
degrees of freedom using:∫

dσα∗(σ)α(σ) = 1 =

∫
dσβ∗(σ)β(σ)∫

dσα∗(σ)β(σ) = 0 =

∫
dσβ∗(σ)α(σ)

or 〈α|β〉 = 0 = 〈β|α〉 etc.
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Restricted HF V

〈1|h|1〉 =

∫
dxχ∗1(x)h(r)χ1(x)

=

∫
drdσφ∗1(r)α∗(σ)h(r)φ1(r)α(σ)

=

∫
dσα∗(σ)α(σ) ×

∫
drφ∗1(r)h(r)φ1(r)

= 1 × 〈1|h|1〉R
= 〈1|h|1〉R.

Similarly show that

〈12|12〉 = 〈11|11〉R
〈12|21〉 = 0.
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Restricted HF VI

So we get the energy of the |1Σ+
g (g2)〉 state as:

E (g2) = 2〈1|h|1〉R + 〈11|11〉R

Q: There is no exchange term present for this state. Why not?

Because both spin orbitals in the |1Σ+
g (g2)〉 state have the same

spatial part this is referred to as a restricted Hartree–Fock (RHF)
state. In an unrestricted HF (UHF) state we’d allow the up and
down spin electrons to reside in different spatial orbitals.
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Restricted HF VII

In the next two slides we see data taken from Helgaker et al. that
allows us to use the energy expressions we have derived (and will
derive later) to compute the numerical energies of the system.
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Restricted HF VIII
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Restricted HF IX
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Restricted HF X

Using the data from table 5.2 we can write down the energies of
the H2 states. In particular, E (g2) = −1.0909 and
E (u2) = +0.1532 Hartree.

So the bonding state |1Σ+
g (g2)〉 is more strongly bound (compared

with two isolated H atoms). Conversely, the anti-bonding state
|1Σ+

g (u2)〉 is even more strongly unbound.
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Restricted HF XI

Summary so far:

The single determinant energy — the Hartree–Fock energy —
of the ket |Ψ〉 = |χ1χ2〉is:

EHF = 〈Ψ|H|Ψ〉
= 〈1|h|1〉+ 〈2|h|2〉+ 〈12|12〉 − 〈12|21〉.

The energy of the |1Σ+
g (g2)〉 state is:

E (g2) = 2〈1|h|1〉R + 〈11|11〉R
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Restricted HF XII

Here are the steps we took to get here:

Decide on the molecular geometry. In this case there was only one
parameter to consider: R. We fix the nuclei using what is called the
Born–Oppenheimer approximation.

Decide on the atomic basis.

Find the symmetry orbitals. This step is optional.

Use the variational principle to combine the symmetry orbitals to
form the molecular orbitals. This was not needed for H2 as the high
symmetry of the system and the use of a minimal basis meant that
the symmetry orbitals were also the molecular orbitals.

Place the electrons into the molecular orbitals to form molecular
spin orbitals.

With these form the approximation to the molecular wavefunction.

Evaluate the energy of the system using this wavefunction.
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Restricted HF XIII

Chemist’s Notation

〈ij |kl〉 = 〈χiχj |χkχl〉

=

∫
dx1dx2χ

∗
i (x1)χ∗j (x2)

1

r12
χk(x1)χl(x2)

=

∫
dx1dx2χ

∗
i (x1)χk(x1)

1

r12
χ∗j (x2)χl(x2)

= (ik |jl)

Symmetries are clearer in this notation:

(ij |kl) = (kl |ij)

and for real orbitals (the usual case), we additionally have:

(ij |kl) = (ji |kl) = (ij |lk) = (ji |lk)
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Density-matrices I

The one- and two-electron density
We first define the one- and two-electron density matrices:

γ1(x1, x
′
1) = N

∫
Ψ∗(x1, x2, · · · , xN)Ψ(x ′1, x2, · · · , xN)

dx2 · · · dxN

γ2(x1, x2, x
′
1, x
′
2) =

N(N − 1)

2∫
Ψ∗(x1, x2, x3, · · · , xN)Ψ(x ′1, x

′
2, x3, · · · , xN)

dx3 · · · dxN

The density matrices depend on spatial and spin coordinates.
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Density-matrices II

The one-electron and two-electron densities are defined to be the
diagonal elements of the density matrices with the spin degrees of
freedom integrated out:

ρ(r1) =

∫
γ1(x1, x1)dσ1

ρ(r1, r2) =

∫
γ2(x1, x2, x1, x2)dσ1dσ2

Interpretation:
The one-electron density ρ(r1) is proportional to the probability of
finding an electron at position r1.
The two-electron density ρ(r1, r2) represents the probability of
simultaneously finding two electrons at positions r1 and r2 in the
molecule.
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Density-matrices III

Let’s work out these terms for a 2-e single-det wavefunction:
Ψ(x1, x2) = 2−1/2(χ1(x1)χ2(x2)− χ2(x1)χ1(x2)) First evaluate
Ψ∗Ψ:

Ψ∗(x1, x2)Ψ(x ′1, x2)

=
1

2
[χ∗1(x1)χ∗2(x2)χ1(x ′1)χ2(x2)

+ χ∗2(x1)χ∗1(x2)χ2(x ′1)χ1(x2)

− χ∗1(x1)χ∗2(x2)χ2(x ′1)χ1(x2)

− χ∗2(x1)χ∗1(x2)χ1(x ′1)χ2(x2)]

=
1

2
[χ∗1(1)χ1(1′)χ∗2(2)χ2(2) + χ∗2(1)χ2(1′)χ∗1(2)χ1(2)

− χ∗1(1)χ2(1′)χ∗2(2)χ1(2)− χ∗2(1)χ1(1′)χ∗1(2)χ2(2)]
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Density-matrices IV

Therefore the one-electron density matrix is

γ1(x1, x
′
1) = 2

∫
Ψ∗(x1, x2)Ψ(x ′1, x2)dx2

= χ∗1(x1)χ1(x ′1) + χ∗2(x1)χ2(x ′1)

And using χi (x) = φi (r)ωi(σ), the density is

ρ(r1) =

∫
γ1(x1, x1)dσ1

= φ∗1(r1)φ1(r1) + φ∗2(r1)φ2(r1)

In general, for an N-electron single-det wavefunction,

ρ(r) =
N∑
i=1

φ∗i (r)φi(r)
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Density-matrices V

The two-electron density matrix is quite simply (no integration
needed for the 2-electron wavefunction):

γ2(x1, x2, x
′
1, x
′
2) =

2(2− 1)

2
Ψ∗(x1, x2)Ψ(x ′1, x

′
2)

=
1

2
[χ∗1(1)χ1(1′)χ∗2(2)χ2(2′) + χ∗2(1)χ2(1′)χ∗1(2)χ1(2′)

− χ∗1(1)χ2(1′)χ∗2(2)χ1(2′)− χ∗2(1)χ1(1′)χ∗1(2)χ2(2′)]

So, if Ψ is a singlet state with χ1 = φ1α and χ2 = φ2β then the
two-elecron density is

ρ(r1, r2) =

∫
γ2(x1, x2, x1, x2)dσ1dσ2

=
1

2
[φ∗1(1)φ1(1)φ∗2(2)φ2(2) + φ∗2(1)φ2(1)φ∗1(2)φ1(2)]
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RHF:Dissociation I

Back to H2: For |1σ2
g〉 = |φ1α, φ1β〉 and |1σ2

u〉 = |φ2α, φ2β〉:

ρ1σ2
g
(r) = 2φ2

1(r)

ρ1σ2
u
(r) = 2φ2

2(r)

ρ1σ2
g
(r1, r2) = φ2

1(r1)φ21(r2)

ρ1σ2
u
(r1, r2) = φ2

2(r1)φ22(r2)

Interpretation: Since the two-electron density represents the
probability of simultaneously finding two electrons at positions r1
and r2 in the molecule, we see here is that the probability of
finding an electron at r1 is unaffected by the electron at r2. Thus,
these single-determinant (Hartree–Fock) wavefunctions do not
correlate the electrons.
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RHF:Dissociation II

Helgaker et al.
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RHF:Dissociation III

Something is wrong. The two-electron density matrix of the 1σ2
g

state suggests that the two electrons are not correlated in position:
If one electron is fixed at one of the hydrogen nuclei, the other
electron is not forced to be at the other nucleus. Instead, the
second electron has an equal probability of being on either nucleus.

This is a problem as at dissociation we would expect one electron
to reside on one nucleus, and the other electron at the other
nucleus: i.e., H2 should dissociate as two neutral hydrogen atoms.
Let’s see what actually happens.
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RHF:Dissociation IV

This has consequences for this restricted Hartree–Fock (RHF)
wavefunction: it does not dissociate into two H-atoms as R →∞.
In this limit, S = 〈1sA(r)|1sB(r)〉 = 0. So

φ1(r) = 1σg = 2−1/2[1sA(r) + 1sB(r)]

φ2(r) = 1σu = 2−1/2[1sA(r)− 1sB(r)].

Now let’s write |1σ2
g〉 in terms of the atomic (non-symmetric) basis

functions

|1σ2
g〉 = |φ1α, φ1β〉

= φ1(r1)φ1(r2)× 1√
2

(α(1)β(2)− β(1)α(2))

= φ1(r1)φ1(r2) 1Σ .
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RHF:Dissociation V

Focus on the spatial part φ1(r1)φ1(r2) and use the notation
A = 1sA(r) and B = 1sB(r).

φ1(r1)φ1(r2) =
1

2
[A(1)A(2) + B(1)B(2) + A(1)B(2) + B(1)A(2)], so,

|1σ2
g〉 =

1

2
|A2〉+

1

2
|B2〉+

1√
2
|AB〉.

Here |A2〉 = A(1)A(2)1Σ is the state with both electrons on A,
i.e., the state H− (similarly for B) and
|AB〉 = 1√

2
[A(1)B(2) + B(1)A(2)]1Σ is the state with one electron

on A and one on B, i.e. the correctly dissociated state consisting
of two neutral H atoms.



Minimal basis RHF Density-matrices Dissociation CI UHF

RHF:Dissociation VI

Q:

Show that at the dissociation limit, the states |A2〉, |B2〉 and
|AB〉 orthonormal. You will find the result for the overlap in-
tegral of two Slater functions given at the start of this set of
lecture notes useful.

Now consider the RHF energy at dissociation (all cross terms can
be shown to tend to vanish as R →∞):

E (g2) = 〈1σ2
g|H|1σ2

g〉

= 〈1
2
A2 +

1

2
B2 +

1√
2
AB|H|1

2
A2 +

1

2
B2 +

1√
2
AB〉

=
1

4
E (H−) +

1

4
E (H−) +

1

2
(2E (H))

= E (H) +
1

2
E (H−).

So, as expected, we do not get 2E (H).
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RHF:Dissociation VII

Q:
What happened to the cross terms in expression for E (g2)?
Show that they all vanish in the R →∞ limit.

Q:

On the previous page, how did we get from the second to
the third line of the derivation? Evaluate matrix elements
〈A2|H|A2〉 etc. and see what mathematical steps are needed to
arrive at the corresponding energies. You will find the general
energy expression for a single determinant useful in filling in
these gaps.
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RHF:Dissociation VIII

Q:

How is 〈AB|H|AB〉 = 2E (H)? To show this, start with H =
HA + HB + V, where V includes the e-e and e-n interaction
terms between the two H-atoms. In the R → ∞ limit, the
e-n interaction goes to zero, and as long as the electrons are
on either atom (do we need to assume that this is the case?),
the e-e interaction also goes to zero, so V → 0. Use this to
evaluate the matrix element and show that it is equal to 2E (H).

Q: Show that 〈AA|H|AA〉 = E (H−) = 2〈A|h|A〉R + 〈AA|AA〉R.
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RHF:Dissociation IX

Q:

Show the previous result starting from the energy expression
for |1σ2

g〉:

E (g2) = 2〈1|h|1〉R + 〈11|11〉R

Hint: Expand the symmetry-adapted atomic orbital φ1 in terms of
the 1sA(r) and 1sB(r) basis functions and use

E (A2) = E (H−) = 2〈A|h|A〉R + 〈AA|AA〉R

Q:

Spin functions can often (but not always) be integrated out
early in a derivation. This is usually a good idea, particularly,
as is the case here, when all wavefunctions have the same spin
state. Re-derive the dissociation energy of the E (g2) state by
first integrating out the singlet spin function. Doing so will al-
low you to focus only on the spatial parts of the wavefunctions.
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CI I

The Configuration Interaction wavefunction:
This is a wavefunction made up of a linear combination of all
allowed single determinants. For gerade ground state of H2 in this
minimal basis set this takes the simple form:

|1Σ+
g (τ)〉 = cos(τ)|1σ2

g〉+ sin(τ)|1σ2
u〉.

No other configurations are allowed to mix as the others are all of
ungerade symmetry.
There will be two orthogonal solutions, one as above and the other
of the form |1Σ+

g (τ + π/2)〉.

Q: Show that 〈1Σ+
g (τ)|1Σ+

g (τ + π/2)〉 = 0.
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CI II

Now we calculate the energy of the system with the CI
wavefunction:

|1Σ+
g (τ)〉 = cos(τ)|1σ2

g〉+ sin(τ)|1σ2
u〉.

The energy of H2 now becomes (real orbitals):

E (τ) = 〈1Σ+
g (τ)|H|1Σ+

g (τ)〉
= cos2(τ)E (g2) + sin2(τ)E (u2) + 2 sin(τ) cos(τ)〈1σ2

g|H|1σ2
u〉

Q:
Show that 〈1σ2

g|H|1σ2
u〉 = 〈11|22〉 = (12|12). This can also be

written as (21|21) = g2121 due to symmetry of these integrals.



Minimal basis RHF Density-matrices Dissociation CI UHF

CI III

So the energy of the CI state is

E (τ) = cos2(τ)E (g2) + sin2(τ)E (u2) + sin(2τ)〈11|22〉.

To find the optimum τ we minimize to get

tan(2τ) =
2〈11|22〉

E (g2)− E (u2)

so solutions are

τn =
1

2
arctan

[
2〈11|22〉

E (g2)− E (u2)

]
+

nπ

2
,

where n is an integer.
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CI IV

From tables 5.1 and 5.2, for H2 at its equilibrium separation, we
get two solutions: τ0 = −0.1109 and τ1 = −0.1109 + π/2. Recall
that the solutions must be π/2 apart to result in orthogonal states.
These give (the ’e’ indicates equilibrium separation):

|1Σ+
g (τ0)〉e = 0.9939|1σ2

g〉 − 0.1106|1σ2
u〉

|1Σ+
g (τ1)〉e = 0.1106|1σ2

g〉+ 0.9939|1σ2
u〉

I.e., the g.s. is dominated with the HF solution |1σ2
g〉 with a

weight of 98.8%.
This is calculated as c2

1/(c2
1 + c2

2 ) as the w.f. always appears quadratically in a matrix element.
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CI V

Here is Table 5.2 from Helgaker et al. again:
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CI VI

Energies of these states are listed in table 5.2. We see that the CI
g.s. is 1.4% lower than the |1σ2

g〉 HF ground state. This may not
seem like much, but it is significant. Further, the effect of the CI
g.s. on the two-electron density is enormous (fig. 5.5): the small
fraction of the |1σ2

u〉 state introduces what is known as Left–Right
correlation: the two electrons are now correlated and prefer to sit
on opposite nuclei.
We will demonstrate below that this mixing of states allows the CI
g.s. to correctly dissociate into two H-atoms at R →∞, whereas,
as we have already shown, the HF g.s. doesn’t.
The one- and two-electron densities can be calculated as for the
RHF wavefunction. These are displayed on the next slide.
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CI VII

Helgaker et al.
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CI VIII

Q:

Compare the CI and RHF two-electron density matrices for the
1σ2

g state in the R → ∞ limit. How do they differ? Does the
CI density matrix suggest that the CI wavefunction will exhibit
the correct dissociation limit?

Q:

When you performed the CI calculations with NWChem you
used CISD and not FCI. In CISD only singly and doubly ex-
cited determinants are included in the CI expansion. Is this
appropriate for H2, or does it lead to an approximation?
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CI IX

Q:

Work out the one- and two-electron densities of the CI wave-
function. As we will show soon, in the R → ∞ limit,
τ0 = −π/4. Write down the two-electron density in this limit
and by expressing it in terms of the 1sA(r) and 1sB(r) orbitals,
show that the CI wavefunction has indeed introduced Left–
Right correlation as shown in Fig. 5.5.



Minimal basis RHF Density-matrices Dissociation CI UHF

CI X

Notice the following:

There is very little change in the one-electron density from the
RHF case. Here the |1σ2

g〉 (i.e. RHF) state has a weight of
98.8%. The |1σ2

u〉 state contributing only 1.2%.

However, the two-electron density is vastly different. Now it
indicates a vanishing probability for the electrons to be on the
same atom. Instead, electrons in the CI wavefunction prefer
to reside on opposite nuclei.

This correlation is called Left–Right correlation. It is a
non-dynamical correlation that arises when multiple
configurations (many-electron determinants) are used to
describe the state.
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CI XI

Dissociation of the CI wavefunction

|1Σ+
g (τ)〉 = cos(τ)|1σ2

g〉+ sin(τ)|1σ2
u〉.

with an energy

E (τ) = cos2(τ)E (g2) + sin2(τ)E (u2) + sin(2τ)〈11|22〉

where

τn =
1

2
arctan

[
2〈11|22〉

E (g2)− E (u2)

]
+

nπ

2
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CI XII

What is τ in the dissociation limit?
For R →∞ we have (Q: Show it!):

E (g2) = E (u2) = 2hAA +
1

2
〈AA|AA〉

This degeneracy can be expected on physical grounds. Also, in the
R →∞ limit

〈11|22〉 =
1

4
〈(A(1) + B(1))(A(2) + B(2))|(A(1)− B(1))(A(2)− B(2))〉

=
1

4
[〈AA|AA〉+ 〈BB|BB〉]

=
1

2
〈AA|AA〉 6= 0

Here we have used the fact that any cross-terms involving A and B
will vanish in the large-R limit.
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CI XIII

Consequently, for R →∞, 2〈11|22〉
E(g2)−E(u2)

→ −∞ (Q: Why −∞?), so

τn = −π
4

+
nπ

2
.

The ground state is n = 0, or τ0 = −π
4 and we get

|1Σ+
g (τ)〉 → 1√

2
[|1σ2

g〉 − |1σ2
u〉]

E (τ)→ 1

2
(E (g2) + E (u2))− 〈11|22〉

Note that in this limit the weight of the |1σ2
u〉 state is equal

to that of the HF, |1σ2
g〉, state! As the system dissociates, the

weights change.
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CI XIV

Q:
Show that in this limit |1Σ+

g (τ)〉 correctly describes two H-
atoms. I.e., show that |1Σ+

g (τ)〉 = |AB〉.

Using the results we have stated (and you have to prove) earlier,
we get

E (−π/4) =
1

2
(E (g2) + E (u2))− 〈11|22〉

= 2hAA +
1

2
〈AA|AA〉 − 1

2
〈AA|AA〉

= 2hAA = 2E (H).

I.e., the CI energy correctly tends to the energy of 2 hydrogen
atoms as R →∞.
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CI XV

In summary:

H2(RHF)→ H +
1

2
H−

H2(FCI)→ 2H
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UHF I

CI is computationally expensive. In general there are a lot of
determinants possible and the variational space increases
exponentially with the size of the basis. So it would be nice to
have an alternative way to dissociate H2. There is one: the
unrestricted Hartree–Fock (UHF) method.
Here we realise that at dissociation we want the spatial parts of
orbitals used by the two electrons to be different: the α-spin
electron will be associated with one hydrogen atom and the β-spin
electron with the other. So we need to allow our single
determinant this freedom. This leads to the UHF solution.
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UHF II

Define the UHF wavefunction |Ψ〉 = |χα1χ
β
1 〉 where the unrestricted

spin-orbitals are defined to be

χα1 (x) = ψ1α(r)α(ω)

χβ1 (x) = ψ1β(r)β(ω)

where

ψ1α = cos(θ)φ1 + sin(θ)φ2

ψ1β = cos(θ)φ1 − sin(θ)φ2

Q:

Show that this choice for the spatial orbitals covers all possi-
bilities. I.e., that for θ = 0 we get the RHF solution and for
θ = π/4 we get the dissociated limit of 2 H-atoms.
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UHF III

Rather than solve the UHF problem for you, I will outline it
and expect you to solve it completely for homework. This is an
important problem so I require you to write it up and submit it
to me!

Next write down the energy of this UHF wavefunction. Start
from the general form for the energy of a single determinant
state (we proved this at the start of this lecture):

E = 〈Ψ|H|Ψ〉 = 〈1|h|1〉+ 〈2|h|2〉+ 〈12|12〉 − 〈12|21〉.

Show that the last term vanishes.

Write each of the terms in the energy expression in terms of
g = φ1 and u = φ2. I will use g and u are short forms for
these orbitals in the expressions below.
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UHF IV

Hence show that the energy can be written as a function of
the angle θ:

E (θ) = 2 cos2(θ)hgg + 2 sin2(θ)huu

+ 2 cos4(θ)〈gg |gg〉+ 2 sin4(θ)〈uu|uu〉
+ 2 sin2(θ) cos2(θ)[〈gu|gu〉 − 2〈gg |uu〉].

Find the extrema of E (θ). There should be two solutions.

Characterize the solutions: they are not both minima so you
will need to find the second derivative of E (θ). Do this
carefully.

Use integral values from table 5.1 to make a plot of the energy
as a function of θ at Re and at dissociation (R →∞). Do
your results agree with this plot? (use any plotting package -
but Mathematica or Gnuplot may be best suited for this)
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UHF V

For the θ 6= 0 solution: evaluate all matrix elements in the
R →∞ limit and show that in this limit θ → π/4.

Hence show that the UHF energy in this limit is that of two
H-atoms.

Solve this correctly and completely and you will have understood
everything we have covered so far.
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