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Properties of Ψ Asymp Cusp VarPr HF thrm Virial

Outline of the lecture I

We are going to be dealing with many-body (i.e., many electron)
wavefunctions. So we will begin by looking at what we know about
these wavefunctions and what tools we have to analyse them:

Properties of Ψ: All the exact properties the wavefunction
(and density) are expected to satisfy. Afterall, any
approximate wavefunction should satisfy as many of these as
is practically possible.

Methods for approximating the wavefunction. We cannot
solve much beyond the 1-electron, hydrogen atom. For
anything more complex, we must solve the Schrödinger
equation approximately.

Mathematical methods: We will need some advanced
mathematical methods in this course.
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Atomic Units I

Atomic units will be used throughout: effectively ~ = 1, me =
1, e = 1.

Mass: Has units of free-electron mass m. SI value is
9.10938× 10−31 kg.

Charge: Has units of absolute value of free-electron
charge e. SI value is 1.60218× 10−19 C.

Angular momentum: Units of reduced Planck’s constant
~. SI value is 1.05457× 10−34 J s.

Length: Units of Bohr radius of the H atom,
a0 = 4πε0~2/me2. SI value 5.29177× 10−11 m.

In these units c = α−1 = 1/137.036, where the fine structure
constant is defined as α = e2/4πε0~c .
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Atomic Units II

If you are not already familiar with atomic units then please read
and work through Szabo & Ostlund §2.1.1. You should be able to
start from the standard form of the non-relativistic N-electron
Hamiltonian and show that if we measure energies in Hartree and
distances in Bohr then the electronic Hamiltonian reduces to

He = −
N∑
i

1

2
∇2

i −
N∑
i

M∑
α

Zα
riα

+
N∑
i

N∑
j>i

1

rij

To get to this form you will need to use the concept of coordinate
scaling. This is a simple but powerful way of learning about the
fundamental length and energy scales of the system.
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Properties I
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Properties II

Notation:

|Ψ〉 : exact many-body wavefunction

|0〉 : approximate wavefunction

Our goal here is to list properties satisfied by |Ψ〉 that we’d also
like |0〉 to satisfy. Some will be obvious, others not so obvious...
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Properties III

|Ψ〉 contains N electrons:
We definitely want |0〉 to describe the same number of electons
and so expect that, if N̂ is a number operator (more on these when
we cover second-quantization), then

N̂|0〉 = N|0〉

i.e., |0〉 is an eigenstate of the number operator with eigenvalue N.
This is not normally an issue and is made explicit when we define
the wavefunction in second-quantized form (more on this later).
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Properties IV

Antisymmetry

P̂ij |Ψ〉 = −|Ψ〉

We expect |0〉 to be antisymmetric.

In second-quantization (which we will use), the Pauli principle
is built into the anticommutating relations of the
creation/annihilation operators.

In first-quantization, we need to make the wavefunction
antisymmetric by expressing it as a linear combination of
Slater determinants.
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Properties V

Square-integrability of the bound states.

〈Ψ|Ψ〉 = 1

To ensure that |0〉 will always satisfy this we expand it in a basis of
normalized orbitals. These orbitals will be, in turn, expanded in a
basis of, say, Gaussian-type orbitals (GTOs). These orbitals are, by
definition, square-integrable. Other basis sets are possible and
some are not strictly integrable (plane-waves) but conditions may
be imposed to ensure integrability (plane-waves can be integrated
in a finite box).
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Variational stability I

Variational stability
If Ψ is the exact g.s. wavefunction and δ is a small variation in Ψ
giving an approximate wavefunction Ψ̃ = Ψ + δ, then the
variational principle states that the error in the energy E [Ψ̃] is only
second-order in the error in variation δ, i.e.,

E [Ψ̃] = E [Ψ] +O(δ2). (1)

We will define |0〉 s.t. this principle is preserved. But not all
methods gaurantee variational stability.
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Variational stability II

What does the notation O(xk) mean?

When we expand a quantity, E (x), in terms of a small parameter x
we often truncate the expansion at some power, say n. If the series
was convergent then the largest of the missing terms would be the
term cn+1xn+1, where cn+1 is a (usually unknown) coefficient. A
compact way of denoting that we have skipped this and other
terms (an infinite number) is to write the series as

E (x) =
n∑

i=0

cix
i +O(xn+1).

If we use the order notation then the above expression is written as
an identity, not an approximation. This is because the last term is
simply a short form for the missing terms.
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Asymptotic form I

Asymptotic form of |Ψ〉:

Ψ→ ΨN−1e−
√

2EI r ,

where EI = EN−1 − EN is the vertical first ionisation energy of the
system.
This result holds for any bound state. It is quite difficult to satisfy
as the slow decay of the exponential function can be only
approximately modelled by GTOs.
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Cusp conditions I

The electron–nuclear cusp condition:
The Hamiltonian has a singularity in the electon–nuclear potential,
however the energy of a bound state is finite. So this singularity
must be cancelled by another singularity of the opposite sign. This
is possible if the wavefunction has a cusp at the nuclei:

∂Ψ

∂riα

∣∣∣∣
riα=0

= −ZαΨ(riα = 0)
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Cusp conditions II

The electron–electron cusp condition:
For similar reasons, there must be cusps in the wavefunction when
two electrons are at the same location. In this case, the cusp
condition depends on the electronic spins. For a singlet system
(electrons with opposite spins) we have

∂Ψ

∂rij

∣∣∣∣
rij=0

= +
1

2
Ψ(rij = 0)

While for a triplet, we get a +1/4 on the R.H.S.
This condition is responsible for correlation effects at short-range.
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Size-extensivity I

Size-Extensivity
For a system containing non-interacting subsystems, the total
energy is equal to the sum of energies of the individual subsystems.
Consider the total Hamiltonian:

HT =
M∑
i

Hi ,

where the Hi are the Hamiltonians of non-interacting systems. If
we have HTΨT = ETΨT , then we must have

ET =
M∑
i

Ei ,

where HiΨi = EiΨi .
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Size-extensivity II

For a system of N non-interacting identical components, a
size-extensive method will result in an energy of

E (N) = NE0,

where E0 is the energy of an individual part. So the energy per
component is a constant: E (N)/N = E0. If this is not the case,
that is, if the energy per component depends on N, then the
method is not size-extensive. In this case as you add (or remove)
components, even though they do not interact, the energy per
component will change.
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Spin I

Spin
In non-relativistic theory, the exact stationary eigenstates of Ŝ2

and Ŝz :

Ŝ2Ψ = S(S + 1)Ψ

ŜzΨ = MΨ

Reminder: Atomic units used throughtout!
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Born–Oppenheimer approximation I

The Born–Oppenheimer approximation
We have electrons and nuclei in our general Hamiltonian. The
nuclei complicate matters. But we can simplify life by arguing that
since the nuclei are nearly 2000 times heavier than the electrons,
they can be considered fixed while we solve the electronic
Hamiltonian. That is we solve

HeΨe = EeΨe (2)

where

He = −
∑
i

1

2
∇2

i −
∑
i

∑
α

Zα
riα

+
∑
i

∑
j>i

1

rij
(3)



Properties of Ψ Asymp Cusp VarPr HF thrm Virial

Born–Oppenheimer approximation II

to get the wavefunction and energy that will be parametrically
dependent on the positions of the nuclei:

Ψe = Ψe({ri}; {Rα})
Ee = Ee({Rα})

From the latter we get our notion of an energy landscape on which
the nuclei move (often assumed to be Classically using Newtons
Laws - i.e, Molecular Dynamics).
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Born–Oppenheimer approximation III

There are two cases then the BO approximation is invalid:

Fast nuclei: The BO condition should not really be stated in
terms of the mass ratios of the electrons and nuclei, but
rather in terms of the kinetic energy ratios. If nuclei are very
fast, they can have kinetic energies comparable with those of
the electrons. Example: Radiation damage.

Level crossing: This is a subtle one. If two electronic energy
levels cross (often happens with excited states) then if there is
a vibrational mode of appropriate symmetry, the BO
approximation breaks down. This is the Jahn–Teller effect
where we must consider a coupling of the electronic and
nuclear motions.

We will henceforth always use the electronic Hamiltonian and
wavefunction.
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Asymptotic form of |Ψ〉 I

Proof of the asymptotic form of the density/wavefunction:

Ψ→ ΨN−1e−
√

2EI r ,

or
ρ(r)→ e−2

√
2EI r ,
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Asymptotic form of |Ψ〉 II

We begin this proof by first proving a simpler result for a
1-electron system. Consider the Hamiltonian

Ĥ = −1

2
∇2 + V (r) (4)

= −1

2
(
∂2

∂r 2
+

2

r

∂

∂r
+

l̂2

r 2
) + V (r). (5)
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Asymptotic form of |Ψ〉 III

Now, as r →∞, assuming V (r)→ 0 (valid for all reasonable
potentials, apart for constant shifts which can be absorbed into the
energy), only the first term in the above Hamiltonian survives and
the eigenvalue problem reduces to

−1

2

∂2

∂r 2
ψ(r) = Eψ(r). (6)

The solution of this equation is the asymptotic 1-electron
wavefunction, thus

ψ(r)→ ce−
√
−2Er . (7)

For the H atom, E0 = −1
2 giving ψ0 → e−r .
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Asymptotic form of |Ψ〉 IV

The N-electron case:

ĤΨN(1, 2, ...,N) = ENΨN(1, 2, ...,N) (8)

As we pull one electron out, ΨN collapses into the state ΨN−1φ(r)
— that is, the product on an N − 1-electron wavefunction and a
1-electron wavefunction φ(r). It is the latter that determines the
asymptotic properties of ΨN .
We will make the assumption that the interaction terms in Ĥ that
act between ΨN−1 and φ(r) can be neglected. This is valid if the
electronic state ΨN−1 is sufficiently compact. This results in the
separable Hamiltonian:

Ĥ = ĤN−1 + Ĥ1. (9)
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Asymptotic form of |Ψ〉 V

Therefore

ENΨN = ĤΨN = (ĤN−1 + Ĥ1)ΨN−1φ(r) (10)

= EN−1ΨN−1φ(r) + ΨN−1(Ĥ1φ(r)). (11)

And so

ΨN−1(Ĥ1φ(r)) = (EN − EN−1)ΨN−1φ(r). (12)

On integrating out ΨN−1 we get the 1-electron eigenvalue problem:

Ĥ1φ(r) = (EN − EN−1)φ(r). (13)
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Asymptotic form of |Ψ〉 VI

Using the result for the 1-electron case (Eq. (7)) we get

φ(r)→ e−
√
−2(EN−EN−1)r (14)

→ e−
√

2EI r , (15)

where EI = EN−1 − EN is the vertical ionization potential.
This will prove to be a useful result in the analysis of density
functionals.

Q:

The more general result is:

Ψ→ rβe−
√

2EI r .

Prove it and show that β = −1 + 1/α where α =
√

2EI .
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Electron–Nuclear cusp condition I

∂Ψ

∂riα

∣∣∣∣
riα=0

= −ZαΨ(riα = 0)
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Electron–Nuclear cusp condition II

Consider a 1-electron system (that’s all we need for this cusp
condition) with a nucleus of charge Z at the origin:

Ĥ = −1

2
∇2 + V (r) (16)

= −1

2
(
∂2

∂r 2
+

2

r

∂

∂r
+

l̂2

r 2
)− Z

r
. (17)

If ĤΨ = E Ψ, where E is a finite, bound-state energy, then we can
define the local energy function:

E Ψ = ĤΨ

= −1

2

∂2Ψ

∂r 2

− 1

r

∂Ψ

∂r
− l̂2Ψ

r 2
− Z

r
Ψ.
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Electron–Nuclear cusp condition III

Now, since the energy E is finite, the L.H.S. is finite everywhere,
and therefore the R.H.S. must also remain finite for all r . In fact,
it must be a constant for all r ! But the R.H.S. contains three
terms that diverge as r → 0, i.e., as the electron approaches the
nucleus. The only way for the R.H.S. to remain finite is for these
three terms to cancel as r → 0.
The l̂2Ψ term vanishes for all spherical states, and can be made to
vanish for more general states by taking the spherical average
about the nuclear position.

Q:

How do we see this?
Hint: l̂2Ψ can be expanded in terms of spherical harmonics
and radial functions. What is the spherical average of Ylm for
l > 0?
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Electron–Nuclear cusp condition IV

The other two terms must cancel giving:

0 = −2

r

∂Ψ

∂r
− Z

r
Ψ

and since Ψ(0) 6= 0, we have

∂Ψ

∂r

∣∣∣∣
r=0

= −Z Ψ(0).

Or, more generally,〈
∂Ψ

∂r

〉
sph

∣∣∣∣∣
r=0

= −Z 〈Ψ(0)〉sph.
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Electron–Electron cusp condition I

The e-e cusp condition proofs are more involved. Here we will look
at a simplified ‘proof’ of the condition.
Consider two electrons i and j approaching each other. We will
work in the limit r ≡ rij = |ri − rj| → 0. Here, the only interactions
that matter are those involving these two electrons. Hence the
effective 2-particle Schrödinger equation can be written as follows:

E Ψ =

(
− 1

2µ
∇2 +

1

r

)
Ψ,

where the reduced mass is µ = 1/2 (Why?). Now let’s use the
same ideas we used for the electron-nuclear cusp. For the system
in a spherically symmetric state (this requires that the electron
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Electron–Electron cusp condition II

spins are opposite, i.e. we have a singlet state. A triplet state
would have a node at rij = 0) we can write

E Ψ = ĤΨ

= −∂
2Ψ

∂r 2

− 2

r

∂Ψ

∂r
− l̂2Ψ

2r 2
+

1

r
Ψ.

Since the L.H.S. is finite, the divergent terms on the R.H.S. need
to cancel. For a spherically symmetric state, l̂2Ψ = 0, so we must
have, at electron coalscence

−2

r

∂Ψ

∂r
+

1

r
Ψ = 0
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Electron–Electron cusp condition III

or, remembering that r is short for rij ,

∂Ψ

∂rij

∣∣∣∣
rij=0

= +
1

2
Ψ(rij = 0).

This holds for the singlet state only! For the triplet state instead
of a half, we get a +1/4 (no proof). There are cusp conditions
involving more than two electrons. Or indeed, the conditions
could involve two electrons and a nucleus, and another other
number and permutation of particles.
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Variational Principle I

Variational stability
If Ψ is the exact g.s. wavefunction and δ is a small variation
in Ψ giving an approximate wavefunction Ψ̃ = Ψ + δ, then the
variational principle states that the error in the energy E [Ψ̃] is
only second-order in the error in variation δ, i.e.,

E [Ψ̃] = E [Ψ] +O(δ2). (18)
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Variational Principle II

Let the exact (ground state) eigenvalue equation be

Ĥ|0〉 = E0|0〉.

Let |0̃〉 be an approximation to |0〉 and let

|0̃〉 = |0〉+ |δ〉

where |δ〉 is an allowed variation.
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Variational Principle III

E [0 + δ] =
〈0 + δ|H|0 + δ〉
〈0 + δ|0 + δ〉

=
〈0|H|0〉+ 〈0|H|δ〉+ 〈δ|H|0〉+ 〈δ|H|δ〉

〈0|0〉+ 〈0|δ〉+ 〈δ|0〉+ 〈δ|δ〉
=
(
E0 + 〈0|H|δ〉+ 〈δ|H|0〉+O(δ2)

)
×
(
1− (〈0|δ〉+ 〈δ|0〉) +O(δ2)

)
= E0 + 〈0|H − E0|δ〉+ 〈δ|H − E0|0〉+O(δ2)

= E0 + δE +O(δ2)

Now δE = 0 whenever Ĥ|0〉 = E0|0〉, therefore the state |0〉 is a
stationary state point in the energy functional E [0̃].
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Variational Principle IV

Conversely, we will now show that all stationary states of E [0̃] are
eigenstates of Ĥ. Notice that here we are treating E [0̃] as a
functional of 0̃.
Let |0〉 be a stationary point (state) of E [0̃]. By definition, for the
variation |δ〉 in |0〉, all terms in E [0 + δ] that linear in |δ〉 must
vanish. From the previous page his means that δE = 0, or

δE = 0 = 〈0|H − E [0]|δ〉+ 〈δ|H − E [0]|0〉.

Now consider the variation i |δ〉. This gives us the condition

δE = 0 = 〈0|H − E [0]|δ〉 − 〈δ|H − E [0]|0〉.

Therefore, adding them up we get

0 = 〈δ|H − E [0]|0〉 ∀ |δ〉.
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Variational Principle V

Since this must hold for all variations |δ〉, we must have

Ĥ|0〉 = E [0]|0〉 ≡ E0|0〉,

i.e., |0〉 is an eigenstate of Ĥ.

Hence the variational principle states that the solution of
Ĥ|0〉 = E0|0〉 is equivalent to a variational optimization of
E [0̃].
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The Hellmann–Feynman Theorem I

For a stationary state, the first-order change in the energy due
to a perturbation may be calculated as the expectation value
of the perturbation operator:

∂E (α)

∂α

∣∣∣∣
α=0

= 〈Ψ|V |Ψ〉.

Proof:
Let H(α) = H + αV where V is the perturbation. Further, let
|Ψα〉 be a stationary state of H(α), i.e.,

H(α)|Ψα〉 = E (α)|Ψα〉.
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The Hellmann–Feynman Theorem II

This implies

E (α) =
〈Ψα|H(α)|Ψα〉
〈Ψα|Ψα〉

Therefore, using the definition |Ψ〉 = |Ψα〉|α=0, and 〈Ψα|Ψα〉 = 1,

∂E (α)

∂α

∣∣∣∣
α=0

=
∂

∂α

〈Ψα|H(α)|Ψα〉
〈Ψα|Ψα〉

∣∣∣∣
α=0

= 2<〈 ∂Ψα

∂α

∣∣∣∣
α=0

|H − E (0)|Ψ〉+ 〈Ψ|V |Ψ〉

and since H(0)|Ψ〉 = E (0)|Ψ〉, we get

∂E (α)

∂α

∣∣∣∣
α=0

= 〈Ψ|V |Ψ〉.
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The Hellmann–Feynman Theorem III

Properties
This theorem is useful for evaluating properties and in geometry
optimizations. For example, in the presence of an electric field F
along x , the Hamiltonian is H(F ) = H − Fx . From the
Hellmann–Feynman theorem we can evaluate the dipole moment
µx as follows:

∂E

∂F

∣∣∣∣
F=0

= 〈Ψ|x |Ψ〉 = µx .

So, if we know the derivative of the energy w.r.t. the field F at
zero field strength, ∂E

∂F

∣∣
F=0

, then we will also know the dipole
moment µx . This can be evaluated using finite differences:

∂E

∂F

∣∣∣∣
F=0

= lim
ε=0

E (F = +ε)− E (F = −ε)
2ε

.
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The Hellmann–Feynman Theorem IV

In practice, we must choose ε small enough that the derivative
converges, but yet large enough that numerical noise is low.
This technique can be used to calculate a number of molecular
properties, but there usualy will be ways to do the same
analytically. For example, a better way to calculatet the dipole
moment µx would be to evaluate the integral:

µx =

∫
ρ(r)xdr.

But the point of using the Hellmann–Feynman theorem is that all
you need are the energies!
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The Hellmann–Feynman Theorem V

Forces
One of the many important applications of this theorem is the
calculation of forces. We will often want to perform a geometry
optimization. One way of doing this is to perform a number of
energy calculations as a function of molecular geometry, and the
lowest energy structure will then be our best guess to the
optimized structure. This may work in a couple of dimensions, but
it will not when there are too many internal degrees of freedom.
Remember that these grow as 3N − 6, so a water molecule has 3
internal parameters to optimize, but a small lipid of 130 atoms will
have 3× 130− 6 = 384 degrees of freedom!
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The Hellmann–Feynman Theorem VI

Instead, the Hellmann–Feynman theorem allows us to use a
variational solution to calculate the forces on each nucleus. The
forces allow us to move the nuclei so as to (generally) reduce the
energy. This gives us a new geometry at which we repeat the
calculation till the forces are as close to zero as we need them to
be. In practice, in addition to the forces, we also calculate the
Hessians: these involve the second derivatives and give us even
more information and generally allow the process to converge
faster.
To see how it can be used to determine the force on a nucleus
consider the Hamiltonian with nuclei at RI displaced by αI :
H(RI +αI ). Let |Ψ〉 be the eigenfunction of H(RI ), i.e., at αI = 0.



Properties of Ψ Asymp Cusp VarPr HF thrm Virial

The Hellmann–Feynman Theorem VII

We can write

H(RI + αI ) = −1

2

∑
i

∇2
i +

∑
j>i

1

|ri − rj |

−
∑
iI

ZI

|ri − RI − αI |

+
∑
J>I

ZIZJ

|RI + αI − RJ − αJ |

= H(RI )−
∑
iI

ZI (ri − RI ) · αI

|ri − RI |3

−
∑
J>I

ZIZJ(RI − RJ) · αI

|RI − RJ |3
+O(α2)
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The Hellmann–Feynman Theorem VIII

We have used the expansion in the last step as we know we need
to differentiate w.r.t. αI and then set αI = 0. I.e., we have written
the Hamiltonian in the form H(RI + αI ) = H(RI ) + αI · V , with

V = −
∑
iI

ZI (ri − RI )

|ri − RI |3
−
∑
J>I

ZIZJ(RI − RJ)

|RI − RJ |3

Hence, from the H-F theorem,

∂E

∂αI

∣∣∣∣
αI =0

= −〈Ψ|
∑
iI

ZI (ri − RI )

|ri − RI |3
|Ψ〉

−
∑
J>I

ZIZJ(RI − RJ)

|RI − RJ |3

This makes it easy to evaluate first derivatives of the energy w.r.t.
nuclear coordinates. So we can do geometry optimizations.



Properties of Ψ Asymp Cusp VarPr HF thrm Virial

The Hellmann–Feynman Theorem IX

Q:
This theorem holds not only for the exact wavefunction but also
for variationally optimized wavefunctions such as |c〉. Prove
this.

Pulay Forces: We usually obtain variational wavefunctions us-
ing nuclear-centered basis sets. In this case, the basis space
alters with changes in the nuclear positions. So there are terms
in the gradient w.r.t. the basis functions. These terms are
called Pulay forces after Peter Pulay.
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The Hellmann–Feynman Theorem X

Outline of proof for the validity of the Hellmann–Feynman theorem
for variational wavefunctions.
Consider a variational wavefunction of the form Ψ̃ = Ψ̃({ci}) with
energy

Ẽ =
〈Ψ̃|H(α)|Ψ̃〉
〈Ψ̃|Ψ̃〉

.

At the extremum, the energy Ẽ depends explicitely on α through
the Hamiltonian, but also contains an implicit dependence through
the variational wavefunction Ψ̃ as the optimum values of the
parameters {ci} are dependent on the Hamiltonian, and so they
are implicitely dependent on α. That is, at the extremum, we have

Ẽ = Ẽ [Ψ̃α, α] ≡ Ẽ [{cαi }, α],
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and we have the usual variational condition:

∂Ẽ
∂ci

∣∣∣∣∣
ci=cαi

= 0.

Here we have used α in the sub/super-script to denote the implicit
dependence on α.
Now consider the total differential of Ẽ w.r.t. α evaluated at the
extremum:

d Ẽ
dα

=
∂Ẽ [{cαi }, α]

∂α
+
∑
i

∂Ẽ
∂ci

∣∣∣∣∣
ci=cαi

∂ci
∂α

∣∣∣∣
ci=cαi

=
∂Ẽ [{cαi }, α]

∂α
.
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But the explicit differential can only act on the explicit α
dependence in the Hamiltonian. That is

∂Ẽ [{cαi }, α]

∂α
=

∂

∂α

(
〈Ψ̃α|H(α)|Ψ̃α〉
〈Ψ̃α|Ψ̃α〉

)

=
〈Ψ̃α|dH(α)

dα |Ψ̃α〉
〈Ψ̃α|Ψ̃α〉

,

and hence we get the result

d Ẽ
dα

=
〈Ψ̃α|dH(α)

dα |Ψ̃α〉
〈Ψ̃α|Ψ̃α〉

.

Q.E.D.
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You will have come across the Virial theorem in the form:

〈V 〉 = −2〈T 〉,

that is, the expectation value of a Coulomb potential V̂ is twice
the expectation value of the kinetic energy operator T̂ . The
molecular virial theorem takes the form

2〈T 〉+ 〈V (R)〉+ 〈 ∂V (αR)

∂α

∣∣∣∣
α=1

〉 = 0.

This may seem rather strange, but, as we shall see, the additional
term is a consequence of the Born–Oppenhiemer approximation.
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To prove the molecular virial theory we will use the idea of uniform
scaling (we will also use this idea a lot when we take up density
functional theory):

Theorem

Under uniform scaling of the electronic coordinates:

ri → αri ,

ψ(ri )→ ψα(ri ) = α3N/2ψ(αri ).

This form of the scaling is needed to ensure normalization.

Q: Prove that as defined above, ψα is normalized.
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We need two more identities:

〈ψα|T |ψα〉 = α2〈ψ|T |ψ〉
〈ψα|V (R)|ψα〉 = α〈ψ|V (αR)|ψ〉
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Proof of the first result:

〈ψα|T |ψα〉 = α3N

∫
ψ∗(αri )

(
−1

2

∑
i

∇2
i

)
ψ(αri )

∏
i

dri

=

∫
ψ∗(αri )

(
−1

2
α2
∑
i

∇α2
i

)
ψ(αri )

∏
i

d(αri )

= α2

∫
ψ∗(r ′i )

(
−1

2

∑
i

∇′2i

)
ψ(r ′i )

∏
i

d(r ′i )

= α2〈ψ|T |ψ〉
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Q:

Show that the matrix element of the potential energy opera-
tor satisfies the following relation upon uniform scaling of the
electronic corrdinates:

〈ψα|V (R)|ψα〉 = α〈ψ|V (αR)|ψ〉

Hint: If you get stuck have a look at the Exercise 4.3 in the
book by Helgaker et al..



Properties of Ψ Asymp Cusp VarPr HF thrm Virial

The Virial Theorem VI

Now consider

∂E (α)

∂α

∣∣∣∣
α=1

=
∂

∂α
〈ψα|H(R)|ψα〉

∣∣∣∣
α=1

=
∂

∂α

(
α2〈ψα|T |ψα〉+ α〈ψα|V (αR)|ψα〉

)∣∣∣∣
α=1

= 2α〈ψ|T |ψ〉+ 〈ψ|V (αR)|ψ〉+ α〈ψ|∂V (αR)

∂α
|ψ〉
∣∣∣∣
α=1

Therefore we get the molecular virial theorem:

2〈ψ|T |ψ〉+ 〈ψ|V (R)|ψ〉 = −〈ψ| ∂V (αR)

∂α

∣∣∣∣
α=1

|ψ〉
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For exact or variational states, using the Hellmann–Feynman
theorem we know that

∂E (αR)

∂α

∣∣∣∣
α=1

= 〈ψ| ∂V (αR)

∂α

∣∣∣∣
α=1

|ψ〉

so, the virial theorem becomes

2〈ψ|T |ψ〉+ 〈ψ|V (R)|ψ〉 = − ∂E (αR)

∂α

∣∣∣∣
α=1
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The R.H.S. is just the classical force w.r.t. uniform scaling of the
nuclear framework.
This force vanishes at molecular equilibrium, at which point the
molecular virial theorem becomes the more famaliar:

〈ψ|T |ψ〉 = −1

2
〈ψ|V (Re)|ψ〉

with all quantities evaluated at R = Re .
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