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Kohn-Sham DFT: summary |

Elp] = Tslo] + Jlo] + Bxelp] + / vt (p(r)dr (1)

must be minimized subject to the orthonormality constraints

<Xi\Xj> = 5ij~

This gives us the Kohn—Sham equations after the usual occupied
orbital rotation to make the eigenvalue matrix ¢;; diagonal:

1
<2V2 + Vs(l")> Xi = €iXi
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Kohn-Sham DFT: summary Il

where the effective potential is defined as

vs(r) = va(r) + Vext( ) + Vxe(r)
dr — Za 0Exc[p]
|r—r’] dr Za:\r—Ra+

op
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Kohn—=Sham DFT: summary Il

We solve the 1-electron Kohn—-Sham equations self-consistently:

() = (~393+ W) (1) = ol

where we have defined the Kohn—Sham operator k(1).
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Kohn-Sham DFT: summary IV

Once we have the orbitals x;, we can evaluate the energy using

L) = Tl + Il + Eulpl + [ va ()

or, equivalently,

L) = Tl + ol + Buclil + [ vea(0)p0)s

= Z € — J[,O] + Exc[p] - / VXC(r)p(I‘)dl"
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Kohn-Sham DFT: summary V

Exchange correlation functionals are usually written in the form

Euclpl = [ pla)esc (o). Volo), - ) 2)

where €,..(p(r), Vp(r),---) can be regarded as the
exchange-correlation density.

We usually split the exchange-correlation density into its exchange
and correlation parts:

exc(p(r), Vp(r), - -) = e(p(r), Vp(r), - --) + €c(p(x), Vp(x), - )
(3)
This separation is convenient for we can then think of using
well-understood approximations for each of these.
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Kohn-Sham DFT: summary VI

The first of the many functionals is the local density approximation
or LDA. In this approximation the exchange-correlation density
depends on the electron density alone (no dependence on gradients
etc.):

Euclpl = [ )P (0 @)

The Slater approximation is used for the exchange-energy density:

S(o(r) = —2 (3)3/2 P3(0)

Using this we get the Slater exchange functional:

ESll = (3)3/2 [ #owar=—c [ 50

™
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Kohn-=Sham DFT: summary VII

Paired with this is a correlation functional parameterized on very
accurate quantum Monte-Carlo (QMC) calculations of the energy
of the homogeneous free electron gas as a function of density.
There are a variety of correlation parameterizations. These differ
by the choice of QMC energies used or by the interpolation scheme
used in the parameterization (the QMC energies are calculated at a
set of densities so some scheme is required to interpolate to all
densities).
Common choices of the correlation functional are:

e PWO91lc The Perdew—Wang (1992) parameterization (called

pw91lda in NWCHEM.

@ VWN The Voski-Wilk—Nusair (1980) parameterization.

So what is called the LDA translates into a combination of the
Slater exchange functional and one of these correlation functionals.
The actual choice will vary with program.
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Kohn-Sham DFT: summary VIII

In the generalized gradient approximations the exchange-correlation
density is dependent on the density and its gradient.

Eﬂd:/mmﬁﬂmmvmmw

As before, we split the exchange-correlation density into its
exchange and correlation parts:

et (p(r), Vp(r)) = €29 (p(r), Vp(r)) + €S (p(r), V(r))

The exchange part of all GGAs takes the form

ﬁ“m—/mﬂmwmm@w
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Kohn—=Sham DFT: summary IX

Fx(s) is sometimes called the enhancement factor and is written
as a function of the reduced density gradient defined as

o) — —1Ve0)
2(371’2)1/3p4/3(r) ’

Two of the common exchange enhancement factors are
@ Becke, 1988 (B83)

352

F)?88(5) =1- — 1
1+ 60ssinh™"s

Becke fitted the parameter S = 0.0042 to reproduce known
exchange energies of rare gas atoms. This particular form for
the enhancement factor was chosen to obey a few exact
relations.
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Kohn-Sham DFT: summary X

e Perdew, Burke & Ernzerhof, 1996 (PBE)

FPBE(s) =14 p——
X (S) +h 1_/,652//{,

In this functional all parameters were obtained theoretically.
r = 0.804. Most physicists use this exchange functional.
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Kohn-Sham DFT: summary XI

In 1993, Becke proposed a three-parameter semi-empirical
functional that cured this problem. The general idea is to mix
some fraction of HF exchange with DFT exchange:

Ebybrid — ggHF | (1 _ g)EGGA 4 GGA

The B3LYP is the most widely used of these and is a slight
modification of Becke's 1993 proposal made the following year by
Stephens and others:

R SN 4 an( €] — £9) + an(EP%  E9)

a7 - E1Y)

A better choice (in my opinion) is the PBEO functional (sometimes called
PBE1PBE) which mixes PBE with 20% HF exchange.
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Meaning of the KS orbital energies |

@ The Kohn—Sham non-interacting system was initially regarded
as no more than a device to facilitate the solution of the
Schrédinger equation.

@ The orbitals and orbital eigenvalues were not taken to mean
anything with one exception:

® epomo = —/
Perdew, Parr, Levy and Balduz (Phys. Rev. Lett. 49. 1691
(1982)) had shown that the energy of the highest occupied
molecular orbital was exactly equal to the negative of the
vertical lonization energy.

@ However, there was a lot of empirical evidence that the
Kohn—Sham orbital energies were closely related to the
experimental ionization energies.

@ But they were generally shifted w.r.t. the experimental values.
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Meaning of the KS orbital energies |l

@ In 2001, Chong, Gritsenko and Baerends (J. Chem. Phys.
116, 1760) showed that for the exact XC potential (they used
a method called SAOP that had many of the properties of the
exact XC potential):
/k ~ —€k

With the relation being exact for the HOMO.

@ In practice this means that we can use the KS orbital energies
as a good approximation to the experimental excitation levels
of our system, but with a constant, and possibly large, shift.

@ Q: Why are the orbital energies shifted?

Before seeing evidence for the above we will prove that
eromo = —1.
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Meaning of the KS orbital energies IlI

Q:

To prove that egomo = —/ we follow the steps:

@ In principle, the DFT density is the exact density. So we
can use the result we have proved earlier (lecture on
Exact Results):

,o(r) N 672\/2E,r

@ In Kohn—Sham DFT the density is written as the sum of
orbital densities:

N N
p(r) = Z xi(r)* = Zpi(r)

@ Now determine the asymptotic form of the orbital
densities p;(r).

continued...
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Meaning of the KS orbital energies |V

Summary

Q:

To prove that egomo = —/ continued....

@ The asymptotic form of p;(r) is found using techniques
we developed in the lecture on Exact Results. The
Kohn—Sham Hamiltonian for orbital y; is

1
<—2V2 + Vs(r)> Xi = €iXi

@ This is a one-electron Hamiltonian. We will soon show
that vg — % so you can write the large-r form of this
Hamiltonian exactly as we did in the lecture on Exact
Results and hence show that

Xi(r) N ef\/f2e,-r

Hence p;(r) — e=2v—2¢r,
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Meaning of the KS orbital energies V

To prove that egomo = —/ continued....

@ Now realise that because p(r) is the sum of the p;, the
asymptotic form of p will be determined by the
(occupied) orbital with the largest (least negative)

Q: energy. This will be the HOMO. Hence we should have,
in KS-DFT,

p(r) N e—z\/—2€HOMOf

@ Hence show that egomo = —/.
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Meaning of the KS orbital energies VI

Now back to the evidence for the relation:
Ik ~ —€)k

Initially the evidence was numerical. Using standard methods for
solving the Schrddinger equation (in this case, a technique called
multi-reference (i.e., multiple determinant) CCSD, or, MRCCSD),
Casida et al. showed that density functionals like the LDA
(remember, this was the simplest functional we could think of),
could, when suitably corrected (more later), produce Kohn—Sham
orbital energies that satisfied the above relation.

Have a look at the TDLDA/LB94 results on the next two slides...
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Meaning of the KS orbital energies VII

Casida, Jamorski,
Casida & Salahub,
N2 EXCITATION ENERGIES (eV)
17 PP J. Chem. Phys.

3 . EXPT x;% E 108, 4439 (1998)
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FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer- I P(eX pt) prg ]_5 58 eV
ence coupled cluster singles and doubles (MRCCSD) results of Ref. 53 for N
the first 35 vertical excitation energies (not counting degeneracies) of N,. (S . G . LIaS, N IST)
Experimental values taken from Ref. 53 are also shown.
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Meaning of the KS orbital energies VIII

TD-DFRT OR EXPERIMENT
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FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator (SOPPA) (S# 1 results from Table 1I of Ref. 54) for
the first 23 vertical excitation energies (not counting degeneracies) of CO.
Experimental values taken from Ref. 54 are also shown.

Casida, Jamorski,
Casida & Salahub,
J. Chem. Phys.

108, 4439 (1998).

IP(expt) = 14.01 eV
(S.G. Lias, NIST)
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Meaning of the KS orbital energies IX

What Casida et al. found what that
@ MRCCSD and a method called SOPPA produced excitation
energies in line with experiment.
@ Time-dependent LDA was good for the occupied states, but
severely underestimated the higher excitation energies.

e However, using the LB94 functional (more on this one) which
specifically corrected the long-range problems of functionals
like the LDA, they got very good agreement for the higher
excitations too.
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Meaning of the KS orbital energies X

Also in 1998, Savin, Umrigar & Gonze published a superb set of
results, this time using exact XC potentials. They obtained these
exact, or very accurate XC potentials using a method of inversion:

o Calculate a very very accurate density, say using QMC.

@ From the first Hohenberg—Kohn theorem there is a one-to-one
mapping between this density and the Kohn—Sham potential
for a non-interacting system that produces this density.

@ Use a convenient method to obtain this potential. Q: How do
you do this for the Helium atom density?

@ Solve the Kohn—-Sham equations using this potential.

@ The resulting orbitals and orbital energies are the most
accurate you can get.

Here are two sets of tables from their paper in Chem. Phys. Lett.
288, 391 (1998):
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Meaning of the KS orbital energies XI

Table 1

Excitation energies of He in hartree atomic units

Transition  Final state ~ Experiment  Drake Aegg

Is > 2s 2°s 0.72833 0.72850  0.7460
2's 0.75759 0.75775

Is—>2p 1°p 0.77039 0.77056  0.7772
1'p 0.77972 0.77988

1s = 3s 3%s 0.83486 0.83504  0.8392
3's 0.84228 0.84245

1s = 3p 2°p 0.84547 0.84564  0.8476
2'p 0.84841 0.84858

1s > 3d 1°D 0.84792 0.84809  0.8481
1'D 0.84793 0.84809

Is—4s  4°S 0.86704 086721  0.8688
4's 0.86997 0.87014

The theoretical energies of Drake and coworkers [14,15] and
the eigenvalue differences are for infinite nuclear mass and ne-
glect relativity. The experimental energies are from Ref. [17].
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Meaning of the KS orbital energies XII

Table 2

Excitation energies of Be in hartree atomic units

Transition Final state Experiment Aegg

25— 2p 1°p 0.100153 0.1327
1'p 0.193941

25 — 3s 2%s 0.237304 0.2444
2's 0.249127

25 — 3p 2°p 0.267877 0.2694
2'p 0.274233

25— 3d 1°D 0.282744 02833
1'D 0.293556

25 — 4s 3% 0.293921 0.2959
3's 0.297279

25 — 4p 3°p 0300487 0.3046
3'p 0306314

25 — 4d 2°D 0.309577 0.3098
2'D 0313390

25 — 55 4% 0314429 03153
4's 0.315855

The eigenvalue differences are for infinite nuclear mass and
neglect relativity. The experimental energies are from Ref. [17].
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Meaning of the KS orbital energies XIII

To summarise:
@ In KS-DFT with an exact functional, we have [, ~ —¢.

@ This relation gets better as the excitations involve the higher
lying states.

@ For the HOMO level we have an exact relation: egono = —/.

@ Contrast these relations with Koopman's theorem from
Hartree—Fock theory.

@ However, for approximate functionals none of these results
hold. Instead the HOMO level is generally shifted closer to
the LUMO (the gap closes), and the excitation energies are
therefore underestimated.

@ The LB94 functional appears to fix the problem (but...see
later).
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Self-Interaction |

Q: What are the problems with using an approximate XC
functional?
Q: What is the origin of the constant shift of energies mentioned

above?
To understand this we will work out how vy should behave for the

hydrogen atom.
@ What is the form of the exact Kohn—Sham potential vg for
large r?

(—;V2 + vs(r)> Xk(r) = €xx(r)

This is equivalent to asking what the potential felt by an
electron will be as we pull it off the atom/molecule. It will see
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Self-Interaction |l

a hole and hence experience a —1/r potential. Therefore we
must have as r — oo

vg — ——.
r

@ We know that vg = vj 4 Vext + Vxc. We also know the
long-range (asymptotic) forms of vy and vVex:
/
N
VJ(I“) — /p(r)/dr/ —
r —1/| r
Z Z

ex =7 — ——
v (1) =~y r

Here N is the number of electrons and Z is the nuclear
charge. For a neutral system these are equal. Therefore these
two cancel out asymptotically.
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Self-Interaction Il

@ Hence we must have

1
Vie(1) = — .

@ How do common XC potentials behave at asymptotically?
Best to use the simplest XC functional: the Slater exchange
functional (the VWN correlation part does not change the
picture very much). The Slater functional is

ESl] = - G / o3(r)dr
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Self-Interaction IV

Using p — e~ %", this gives us an XC potential:

SEg[p]

Vie(1) = 5p

It has the wrong asymptotic form. It decays too quickly with
distance.

@ This is what leads to a small band-gap in DFT: the
unoccupied levels are all shifted down with respect to the
occupied orbitals.
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Self-Interaction V

@ Self-Interaction: Another way of looking at this problem is to
realise that the too rapid decay of vy, with distance is
equivalent to the electron ‘seeing’ itself.

Vie(r) = —e™ 57
Zr
R C(+re3")

r

l.e., rather than see a hole with charge +1, it sees a hole with
charge +re™ 3" which goes exponentially fast to zero.

@ Thus for moderate separation the electron will see little or no
attraction to the ion, and will therefore be very weakly bound,
or even unbound.
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Self-Interaction VI

o This is the self-interaction problem, and is termed thus as it
is as if the electron interacts with itself as the hole ‘fills up’
with increasing r.

@ Any molecular property that depends on the unoccupied levels
will there be effected. Examples are: polarizabilities,
hyperpolarizabilities, excitations, in particular charge-transfer
excitations, NMR shifts.
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Self-Interaction VII

In 1994, van Leeuwen and Baerends (Phys. Rev. A 49)
constructed an XC functional that resulted in an XC potential that
decayed as —1/r. This functional, termed LB94 takes the form:

%2

1+ 3Bxsinh~1(x)’

VLB94(1“) — _Bnl/?)(r)

XcC

where 5 = 0.05, n(r) is the electronic density, and the
reduced-gradient is defined as x = |Vn|/n*/3.

Using the asymptotic form of the electronic density: r — oo,
n— e %, where o is a constant. Show that v.B% — —1/r,
Q You will need to use an appropriate series expansion for

sinh~1(x).
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Here is how the LB94 functional behaves for the beryllium atom
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Self-Interaction IX

@ Here, vy is the reference XC potential obtained from a very
accurate density. vipa and VDA + VBecke—Perdew are two
variants of the LDA that include the Slater form of the
exchange. The latter two clearly decay too quickly with
separation in comparison with the reference vic.

@ Finally we have vipa + Vimodel Which is XC potential from the
LB94 functional. This one agrees with vy, quite well indeed,
but only at long range!.

@ Notice what happens at short range: The LDA model
potentials are both far off from the exact potential, but they
are uniformly shifted from vy.. A uniform shift in a potential
is never a problem. However the short-range behaviour of
LB94 is, by comparison, rather poor.
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Self-Interaction X

@ As a consequence, all properties that depend on the
short-range part of the XC potential (the density, and all
properties that depend on the density) come out poorly with
LB94.

@ But properties that are more sensitive to the long-range part
(higher excitation energies) come out better. We have already
seen this above.

It was Casida and Salahub (J. Chem. Phys., 113 (2000)) who
noticed this problem with LB94. They argued that rather than
decay as —1/r, all local and semi-local functionals should decay as
—1/r 4+ A, where A is a constant shift.

The then demonstrated that rather than use the LDA or LB94 on
their own, we should instead splice LB94 to the LDA so as to
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Self-Interaction Xl

achieve a much better form of the overall XC potential. But this
splicing should include the constant off-set A:

VACTEPA @) = max{vEPA(r) — A VEP ()

XcC

where the shift is given by A = elﬁ%%/lo + 1.

This is the CS00 asymptotic correction used in NWCHEM.
It is one of a handful of possible corrections, but NWCHEM
includes just this one.
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Self-Interaction XlI

What is the origin of the shift?
It can be shown that the exact asymptotic form of the XC
potential is

1
Ve — — + (enomo + /).

This is a generalisation of the result we derived earlier. The proof
is not essential.

@ For an exact functional, we have shown that egonvo = —/. So
the term in the brackets vanish.

@ But for local and semi-local functionals it does not.

@ This has to do with what is called the derivative discontinuity.
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Self-Interaction XIII

@ Put simply, for the exact XC functional, the energy of the
HOMO orbital changes discontinuously as the electron
number crosses an integer value. Think about it like this: For
N electrons our HOMO orbital energy will be
enomo = ey = —I(N), but for N + § electrons it will be
enomo = en+1 = —I(N + 1) = A(N), where I(N) is the
vertical ionisation energy for an N-electron system and A(N)
is the electron affinity for the N-electron system. So the
HOMO energy is discontinuous around N.

@ However, local and semi-local functionals cannot describe this
discontinuity, instead they interpolate between the two values.

@ This means that we no longer have egomo = —/, and so

approximate XC potentials will be offset by the amount
approx

€momo T+ I- This is the origin of the A.
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Self-Interaction XIV

It is best to see this pictorially. In the next few images we will look
at the XC potential for Helium calculated using the HCTH407
functional compared with a (nearly) exact XC potential (this was
obtained by calculating a very accurate He density and inverting it
to obtain the potential).
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Self-Interaction XV

He: eXchange-Correlation potential
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Self-Interaction XVI

He: eXchange-Correlation potential

0.5 T T T T T T T T T

— — Exact, shifted
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Asymptotic-correction |

Since we know what the asymptotic form of vi. should be we can
enforce it through an empirical fix known as the asymptotic
correction. We need to account for the shift. Tozer and Handy &
Casida worked all this out in 1998:

1
VXC(I“) — —; + I+ egomo
So if know (or calculate) /, calculate egonmo from a standard DFT

calculation, then we will be able to work out the shift and apply
this correction. This is known as the asymptotic correction.
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Asymptotic-correction |l

He: eXchange-Correlation potential
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Asymptotic-correction Ill
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- 7 ] effect of this on the
g A oo ] excitation energies
8 1: w3 o 5 00°° is quite dramatic.
§ of 4 ; Casida, Jamorski,
" i ] Casida & Salahub,
o 4 ] J. Chem. Phys.
b et 108, 4439 (1998).

5 6 7 8 9 10 11 12 13 14 15

SOPPA

FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator (SOPPA) (S# 1 results from Table 1I of Ref. 54) for
the first 23 vertical excitation energies (not counting degeneracies) of CO.
Experimental values taken from Ref. 54 are also shown.
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Asymptotic-correction IV

Excitation energies

CASPT2
PBEIPBE
HTCH(AC)

Deviation [eV]

Figure 9-2. Performance of various functionals in the framework of time-dependent DFT for excitation energies
of ethylene.
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Polarizabilities

Self-Interaction
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5 molecules, TZVP+FIP basis set, Calaminici, Jug and Késter, 1998

AC Dispersion
0000000000000000000000000 OO0

HF 129 BLYP 041
LDA 033 CCSD(T) 031
12 molecules, POL basis set, Adamo et al., 1999

MP2 0.25 BY7 042
MP4 0.28 B3LYP 039
BD(T) 0.23 HCTH 0.29
PBEIPBE 0.20

20 molecules, POL basis set, Cohen and Tozer, 1999
HF 176 HCTH
MP2 095 B3LYP
BD 129 BY7
BLYP 225 BY7-1

Summary
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Asymptotic-correction VI

@ The asymptotic correction does fix what is called the
one-electron self-interaction error.

@ But there is no clear way to apply an asymptotic correction in
the bulk phase. And the self-interaction error manifests itself
there too.

@ We know that Hartree—Fock is free of self-interaction, so one
solution to the problem is to include more and more
Hartree—Fock-type exchange in KS-DFT. But this leads to an
overall loss in accuracy.
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Asymptotic-correction VII

@ A better solution is to use range-separation: Split the e-e
interaction operator into a short- and long-range part:

1 _ erfc(Br2) N (1 — erfe(Bri2)

ro rio ri2

The complementary error function is chosen as it allows easy
integral evaluation. Now use DFT on the short-range part and
Hartree—Fock-exchange on the long-range part. In this way
you get the best of both worlds.

@ The DFT usually takes care of all correlation, and only the
local part of the exchange which it is known to get right. HF
(or something better) then takes care of the long-range
exchange.

@ Functionals that use this technique are termed
range-separated or Long-range Corrected (LC) functionals.
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Asymptotic-correction VIII

@ Functionals such as CamB3LYP, LC-PBE, LC-PBEO use this
principle.

@ There is one free parameter in this model: the extent of the
range-separation controlled by 3. Several authors have worked
on techniques to determine [ self-consistently. But issues
remain: in a strongly anisotropic system, 8 should probably
vary with position, or in direction. Issues like this remain
unsolved.

@ It is also possible to use post-Hartree—Fock methods on the
long-range part. For example, you could use MP2 or the RPA
(random phase approximation). This would allow the
dispersion interaction to be described by DFT. More on this
next.
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Dispersion |

The other problem with DFT is that almost all conventional
functionals fail to describe the dispersion (van der Waals)
interaction. This is a long-range and non-local interaction that
arises from the correlation of quantum mechanical fluctuations on
the interaction species.

Consider the argon dimer: this is a dispersion-bound system, that
is, the attraction between two argon atoms arises purely from the
dispersion interaction. This is typical of the rare-gas atoms. On
the next slide we see interaction energies calculated for this system
with MP2, LDA, PBE and B3LYP using the aug-cc-pVTZ basis
set using the counterpoise correction.
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Dispersion |l
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Dispersion Il|

@ The reference MP2 energies exhibit the classic interaction
energy curve as expected. Recall that MP2 is not perfect for
this system, but it will serve as a reference here.

@ The density functionals are all over the place. LDA and PBE
show some binding but is it from the dispersion?

@ The clue is in the long-range behaviour: all density functionals
decay to zero much too quickly with R.

@ On the other hand, the dispersion energy (in the MP2 tail) is
more slowly decaying as R~°.

@ B3LYP is completely repulsive!
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Perturbation Theory |

The dispersion energy first arises at second-order in intermolecular
perturbation theory.

Consider a pair of spherical atoms A and B placed along the z-axis
and separated by a distance R. The Hamiltonian for this system
may be written as

H=HO® 4 HO),

where H() = Hﬁ\o) + H/E\O) is the sum of the unperturbed
Hamiltonians of A and B, and, the intermolecular interaction
operator takes the leading-order multipole expanded form:

HWY = ﬁ(fw?s + 9B — 22a2B),
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Perturbation Theory Il

where, X4 is the position operator (dipole moment operator) along
the x-axis and centred at A.

If HY)|m) = E) |m) and HS’|n) = ES)|n), then a convenient
basis for the dlmer are the states |mn).

The zeroth order wavefunction for this system is then |00) and the

zeroth order energy is E(©) = E(O) + E,(g())

Show that the first-order Raleigh—Schrodinger perturbation the-
ory (RSPT) energy correction for this system is zero. That is,

E® = (00|H™M|00) = 0.
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Perturbation Theory IlI

The second-order dispersion energy for the two interacting systems
takes the standard Raleigh—Schrodinger form

£2) — g (00| H M) [ mn) 2

disp — Z E(o) :

0 0
m=£0,n£0 E;(\,,)n + E:(B,L - EA(\,()) —Egpo

This term can be evaluated using ideas borrowed from
linear-response time-dependent DFT (To find out more about
LR-TDDFT see the book by Carsten), but here we will use the
average energy approximation to simplify this expression.

In the average energy approximation each energy difference in the
denominator is approximated as a constant E,(,?) — Eéo) ~ A which
will represent an average excitation energy, that will typically be
the atomic ionisation energy.
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Perturbation Theory IV

Show that in this approximation the dispersion energy for two
identical atoms may be written as

@ . G
disp ™ _ﬁ7
Q:
where
Q:%mﬂw
Hints:

@ Use the resolution of the identity to result in an expression
that involves terms such as (0|xy|0).

@ Use the fact that the state |0) is invariant under reflection in,
say, the yz-plane to show that such terms are zero.
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Perturbation Theory V

Using the expression for the dynamic polarizability:

() = 23 2ol nlr;10)

2
wWen — W
n=0 n0

it can be shown (try it!) that in the average energy approximation

Co = %Aa(o)z,

where «(0) is the static polarizability.
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Perturbation Theory VI

This is the origin of the well-know —% form for the van der
Waals, or dispersion interaction. A few comments about this
expression:
@ It is only the first term in an infinite series. More generally we
will have an expansion like — g — 2% — &8 - - -.

@ The C, coefficients will generally be orientationally dependent.

@ For a spherically symmetric system, you can show (using
symmetry arguments) that both the angular dependence and
the odd-n terms vanish.

@ The expansion diverges as R — 0 so it must be damped using
functions that cancel out the offending powers of 1/R.
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Perturbation Theory VII

@ For a molecular system the expansion is usually generalised to
include a double sum over the atoms a in molecule A and
atoms b in molecule B:

ab

= C
EflABl=— Y Y=

acA,beB n=6 ab

@ For low-dimensional systems with small HOMO-LUMO
(band) gaps, this expression is qualitatively wrong as it
implicitly assumes that all electron fluctuations (see next topic
on Drude oscillators) are local. This is not the case in such
materials and we get a substantial contribution from the
long-range plasmon-like fluctuations. This leads to the
presence of terms in the expression that behave like 1/R?.
(See the Casimir force and papers by Misquitta et al. and
Tkatchenko et al. that have addressed this unusual case.)
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Drude Model |

An alternative picture for the dispersion energy arises from coupled
quantum Drude oscillators as follows.

The dispersion energy cannot be described in terms of classical
interactions as the electrostatic and induction terms can. A
semi-classical picture is required.

| R |

! Za I. Zb
@ Tswrriine @ TswvrrTive
+Q -Q +Q -Q

>
p4
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Drude Model Il

Model each molecule with a fixed charge +Q at the centre and an
oscillating charge —Q. In the usual scaled units (i.e. energy in
units of hv = hw, length in units of (%2/km)/#) the Hamiltonian
is (assuming infinite separation):

19 1 , 18 1 ,
—s s+ ZzA® — S + Z2z5°%. 5
282A2 + 2ZA 5 + 2ZB ( )

H =
20zp

The energy is the sum of the individual energies, i.e.,
Ey,vs = va+ v + 1. The ground state energy (v4a = vg =0) is 1
unit, i.e. hv.
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Drude Model Il

If the instantaneous displacements are z4(t) and zg(t), the dipole
moments on A and B are uay = —Qza(t) and ug = —Qzp(t),
respectively.

At a finite separation R, these dipoles interact. The general form
of the dipole—dipole interaction operator is (Q: How does it relate
to the earlier form used in the Perturbation Theory section above?)

A A

Hup = —#7\;;3 (2 cos B, cosfp — sinf4sin O cos qb),
Here, 04 = g = m and ¢ = 0 so the Hamiltonian at finite

. - 2
separations has the additional term czazg where ¢ = —2%.
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Drude Model IV

Using the new variables Z; = \/g(zA + zg) and

Zr = \@(ZA — zg), the potential term in the Hamiltonian becomes

1 1 1 1
V = §ZA2 + CzZpzp + 5232 = 5(1 + C)Zl2 + 5(1 — C)Zg2,

while the kinetic energy is unchanged in form:

F_ 1o 19 19 19
B 2 aZA2 2 8232 B 2 8212 2 8222 '
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Drude Model V

So we now have an oscillator Z; with frequency /1 + ¢, and
another, Z,, with frequency /1 — c. The allowed energies (in the
original scaled units) are now (vi + 3)vVI+c+ (v +3)vVI—c.
In a classical system the coupling doesn't change the minimum
energy, which occurs when both oscillators are at rest. That is,
zp =2z =0, so Zy = Z, = 0 also, and the total energy is zero.
A quantum system, however, has zero-point energy: 1 unit in the
original uncoupled system.
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Drude Model VI

When vi = v = 0 the energy of the interacting system is

(\/14—764—\/7) f[(l—i—lc TP+

That is, the zero-point energy is smaller for the correlated
oscillators than for the uncoupled ones, whether c is positive or
negative. The stabilization energy is the Drude approximation to
the dispersion.
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Drude Model VII

: : : : 4
The Drude expression for the dispersion energy is —%c2 = —26%
which varies as %. The coefficient of this term is usually labeled

GCs and, inserting the energy factors scaled out, is defined as

iw Q4

Co = 2(4meg)?k?

We now need to relate @ and k to measurable quantities. This is
done using classical ideas.
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Drude Model VIII

If the charge —Q extends by z in an electric field E then balancing

forces we must have kz = —QE, or z = —%. Now, by definition,
u=—-zQ = QTZE. But, by definition of the polarizability, u = oE,
therefore

QZ
This allows us to re-write the Cg as

huwa?

Co— >
7 2(4meo)?
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Drude Model IX
In 3-dimensions this expression becomes

3hwa?

Co = 4(4meg)?’

|Q: Show this!

and taking, as London did, /uv = E;, the ionization energy, we get

3E/Oé2

Co— ¥
6 4(4meg)?

This is an approximation, but it contains all the correct physics.
The dispersion energy is always attractive (at second-order) and
can be interpreted as arising from a correlation in the electronic
fluctuations on the molecules.
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Drude Model X

@ In this phenomenological model, the dispersion energy arises
from the correlations of quantum fluctuations. It is a purely
quantum phenomenon and has no classical analogue.

@ Further, it as it is a non-local phenomenon, we can now
understand why local and semi-local density functional are
unable to describe this energy. Functionals need to be
explicitly non-local to be able to describe the dispersion
energy.

@ However many density functionals can be corrected to account
for the missing dispersion by adding to the DFT energy a
term like:

cb
Edisp = - Z fswitch(ﬁrab)rT;

b>a ab
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Drude Model Xl

where a and b are atomic sites separated by r,, and with a
dispersion coefficient C(;’b. The switching function

fawitch (Brap) which typically depends on one or more
parameters (here only one is indicated) has to be very
carefully chosen to avoid double-counting the dispersion at
short range. Also, this switching function needs to be tuned
to each density functional.

@ This kind of correction was first introduced in 2001 by Wu et
al. from the Scoles group, and was generalized by Grimme in
2004. Grimme has subsequently improved this correction in

methods termed ‘D2’ (2006), ‘D3’ (2010), and a ‘D4’
correction is due to come out soon.
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Drude Model XIlI

@ In many of these models, it is assumed that the dispersion
coefficient between atoms is fixed and does not vary with
changes in chemical environment. This is often a poor
approximation.

@ Furthermore, the Cg term is only one term in the dispersion
expansion and it is generally angular-dependent.

@ Additionally, for semiconductors and metals additional terms
(as low as () arise from plasmon modes. These are long
wavelength fluctuations arising from the conduction electrons.
For such systems the above model breaks down.

@ There are explicitly non-local functionals which do not need
this correction, but in practice, this correction, if well tuned,
can be more accurate than many other more sophisticated
non-local functionals.
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Drude Model XIll|

@ There are at present many empirical dispersion correction
models and some that are less empirical. One of the latter is
the so-called ‘many-body dispersion’ , or MBD, method of
Tkatchenko, diStasio and others (2012). Here the dispersion
energy is computed through a coupled dipole oscillator model
in much the same way as we coupled the two Drude
oscillators. This method uses a physical model for the terms
and can account for much of the anisotropy in the dispersion.
The authors call this a ‘many-body’ method as the atomic
polarizabilities of the atoms (which are the bodies) are
coupled together to result in a many-atom, or many-body
dispersion energy.
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Drude Model XIV

@ One problem all empirical dispersion models face is the choice
of the switching function. No matter how accurate the
long-range dispersion energy may be, if the switching is not
done correctly, errors can and will be large. It is quite possible
that the main differences in the various models is not so much
in the choice of dispersion parameters, but is in the methods
used to switch from the dispersion model to the
density-functional.

@ Finally, just to emphasise an important and often ignored
point: none of the dispersion models used in DFT actually
compute the dispersion energy as defined through a
perturbation theory like SAPT (symmetry-adapted
perturbation theory — one of the most accurate methods for
intermolecular interactions). Instead what is computed is the
leading and perhaps next-leading order contribution only. This
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Drude Model XV

is often sufficient for DFT as the higher order terms come into
play mainly at short-range, and this is where the switching
function together with the density-functional are meant to
account (i.e., fudge) the missing terms. Therefore it is wrong
to term these energies as the dispersion energy, nevertheless it
is often, erroneously, done in the literature.
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DFT: Best usage |

How do we best use DFT?

@ Use a basis set appropriate to the problem!

@ Try a range-separated functional, and determine the
range-separation needed by enforcing the DFT version of
Koopman' theorem: egono = —/

@ The DFT+U scheme (which we have not discussed) may be
appropriate when you have transition metals in your system.
Here, an empirical parameter (the ‘U’) is used to fix the
self-interaction problem.

@ Use a dispersion correction. This should be the default as any
correction may prove better than none.
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DFT: Best usage Il

How do we best use DFT?

@ If you are after subtle correlation effects use range-separation
with the RPA (random-phase approximation) for the
long-range. This account for both exchange and correlation
(approximately) at long-range.

@ For weak interactions consider the dispersionless
density-functional (dIDF) of Pernal et al. (2009). To this you
need to add an accurate dispersion model. This method has
been shown to result in reliably accurate interaction energies
for weakly bound complexes.

@ For large systems where even DFT becomes too
computationally expensive consider the newer of the
tight-binding DFT (TB-DFT) methods. These are of course
more approximate.
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