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Outline of the lecture I

We are going to be dealing with many-body (i.e., many electron)
wavefunctions. So we will begin by looking at what we know about
these wavefunctions and what tools we have to analyse them:

Properties of Ψ: All the exact properties the wavefunction
(and density) are expected to satisfy. Afterall, any
approximate wavefunction should satisfy as many of these as
is practically possible.

Methods for approximating the wavefunction. We cannot
solve much beyond the 1-electron, hydrogen atom. For
anything more complex, we must solve the Schrödinger
equation approximately.

Mathematical methods: We will need some advanced
mathematical methods in this course.
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Approximate Methods I

What are the methods available to solve the Schrödinger equation
for many electron systems?

Variational principle

Perturbation theory

Non-perturbative, approximate methods

Stochastic methods

Before moving on to the many-body problem, we will re-visit the
first two methods in a fairly basic way. You have already seen
these before, but let’s go over these again. The non-perturbative
methods will be covered later in the course. Stochastic methods
form a special topic and should be the subject of another course,
but we may be able to discuss them at the end, should we have
time. We won’t!
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The Variational Method I

We will follow Sec. 1.3 in Szabo & Ostlund.

Our goal is solve the eigenvalue problem:

H|Ψ〉 = E|Ψ〉,

where |Ψ〉 is the exact (usually g.s.) wavefunction with energy
eigenvalue E .
Assume that we know the complete set of orthonormal solutions to
H. This is normally an uncountable set, but here, for simplicity we
will index these solutions

H|Ψα〉 = Eα|Ψα〉, α = 0, 1, · · ·
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The Variational Method II

and assume that we have ordered the eigenvalues s.t.

E0 ≤ E1 ≤ E2 ≤ · · ·

The solutions are orthonornal, so

〈Ψα|Ψβ〉 = δαβ.

Any trial wavefunction can be written in terms of this complete set:

|Ψ̃〉 =
∑
α

|Ψα〉cα =
∑
α

|Ψα〉〈Ψα|Ψ̃〉

and, similarly, for the c.c.

〈Ψ̃| =
∑
α

c∗α〈Ψα| =
∑
α

〈Ψ̃|Ψα〉〈Ψα|
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The Variational Method III

We will now prove the Variational Principle in its usual form that
states that if

〈Ψ̃|Ψ̃〉 = 1

then

〈Ψ̃|H|Ψ̃〉 ≥ E0.

Q:

First show that

〈Ψ̃|Ψ̃〉 = 1 =
∑
α

|〈Ψα|Ψ̃〉|2
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The Variational Method IV

Now consider

〈Ψ̃|H|Ψ̃〉 =
∑
αβ

〈Ψ̃|Ψα〉〈Ψα|H|Ψβ〉〈Ψβ|Ψ̃〉

=
∑
α

Eα|〈Ψα|Ψ̃〉|2

≥
∑
α

E0|〈Ψα|Ψ̃〉|2 = E0
∑
α

〈Ψα|Ψ̃〉|2 = E0

Q: Solve Exercise 1.19 from S & O
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The Variational Method V

We will make extensive use of trial wavefunctions expanded in a
linear combination of fixed basis functions.

To save space we will use a different notation: The trial function
will be |Ψ̃〉 = |c〉 and the basis functions will be |i〉.

|Ψ̃〉 = |c〉 =
N∑
i=1

ci |i〉

We will not assume that the basis functions are orthogonal (S & O
assume they are), that is

〈i |j〉 = Sij = (S)ij

where S is called the overlap matrix.
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The Variational Method VI

We also define the Hamiltonian matrix:

(H)ij = Hij = 〈i |H|j〉.

In this notation,

〈Ψ̃|Ψ̃〉 = 〈c|c〉 =
∑
ij

c∗i cj〈i |j〉 =
∑
ij

c∗i Sijcj

Similarly, show that

〈Ψ̃|H|Ψ̃〉 = 〈c|H|c〉 =
∑
ij

c∗i Hijcj

We need to minimize 〈Ψ̃|H|Ψ̃〉 s.t. 〈Ψ̃|Ψ̃〉 = 1. To do the former
and enforce the latter we use the method of Lagrange multipliers
(see Mathematical Methods for Physicists by Arfken, Weber and
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The Variational Method VII

Harris) and impose the normalisation requirement using a
constraint. Define the function

L(E , c1, c2, · · · ) = 〈Ψ̃|H|Ψ̃〉 − E (〈Ψ̃|Ψ̃〉 − 1),

where E is the Lagrange multiplier. We have chosen to use the
letter ‘E’ with a negative sign as we will see that this multiplier will
end up being the energy. The minimum (actually, extremum) is
achieved when

∂L
∂c∗k

= 0 =
∂L
∂ck

.

We will use the first condition:

0 =
∂L
∂c∗k

=
∑
j

cjHkj − E
∑
j

cjSkj ,
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The Variational Method VIII

or, changing dummy variables,∑
j

Hijcj − E
∑
j

Sijcj

or, in matrix form

Hc− ESc = 0

(H− ES)c = 0

For these set of linear equations to have non-trivial (i.e., non-zero)
solutions, we must have

det(H− ES) = |H− ES| = 0.
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The Variational Method IX

This gives us N solutions which we will order as

E0 ≤ E1 ≤ E2 ≤ · · ·EN .

For each energy, Eα, we have a solution vector of coefficients cα,
s.t.

(H− EαS)cα = 0.

Or,

Hcα = EαScα.

The eigenfunctions can be calculated as:

|Ψ̃α〉 = |cα〉 =
∑
i

Ciα|i〉,
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The Variational Method X

where the matrix element Ciα = (cα)i = (C)iα. We will henceforth
treat C as a matrix, and, if we are interested in a particular column
vector we will use the notation cα.
Now, if we use an orthonormal basis, then S = I, giving

Hcα = Eαcα,

which now looks like a standard eigenfunction equation, only here
the eigenfunction is a vector from which the function can be
calculated as shown above.
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The Variational Method XI

Q:

The eigenfunctions |Ψ̃α〉 can be made orthonormal (see S &
O, Sec. 1.1.6), so 〈Ψ̃α|Ψ̃β〉 = 1. Show that, when S = I, this
implies that

C†C = I.

I.e., the matrix C is unitary. Also show that

C†HC = E,

where the energy matrix is a diagonal matrix defined as Eαβ =
Eαδαβ. This shows us that the solution C is the matrix that
diagonalises the Hamiltonian matrix H.
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The Variational Method XII

Q:

Solve questions 1.21 and 1.22 in Szabo & Ostlund. The first
will show you how the variational principle can be extended to
excited states, and the second is an application of this principle
to calculate the polarizability of the hydrogen atom.
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The Variational Method XIII

The (linear) Variational principle is deceptively simple and
tremendously useful. All of Hartree–Fock theory, configuration
interaction, and density functional theory are based on this
principle.
We will come back to this shortly, but let us look ahead a bit:

We expanded our wavefunction in a linear combination of
basis functions and then used the variational principle to find
the best coefficients.

How do we choose the basis functions?

A convenient choice will be to use atomic-like functions as the
basis functions.
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The Variational Method XIV

These atomic orbitals will include ground and excited states of
the atoms. After all, when bonds are formed, the atoms are
not in their ground states: they will be in some linear
combination of ground and excited states.

So the molecular wavefunction is expanded as a linear
combination of atomic orbitals. This, LCAO, model is used in
most electronic structure calculations.

The success of this approach depends on the completeness of
the basis set. It turns out that we cannot really use true
atomic orbitals as we cannot even solve the helium atom to
get all of these. In any case, even if we did have the atomic
states, how could we possibly include enough of them?
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The Variational Method XV

In any case, the true many-body wavefunction is not easy to
write down. We always approximate it in some way, and then
expand the appoximation in a linear combintation of basis
functions.

This means that our variational solution will be approximate.
And we therefore need to find ways of correcting it.

One such way is perturbation theory.
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Raleigh–Schrödinger Perturbation Theory I

We will now briefly recap of Raleigh–Schrödinger perturbation
theory. We use perturbation theory when we cannot solve a
differential (or any other) equation exactly, but can find solutions
to the major part of it; we then treat the remainder as a
perturbation over the solution we can find. This is how it works:

Split the Hamiltonian into two parts:

H = H0 + λV

where H0 is a Hamiltonian which we know how to solve and
V contains that troublesome parts. We expect V to be a
perturbation so it must be small in some sense.
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Raleigh–Schrödinger Perturbation Theory II

λ is a complex number that will be 1 for the physical solution.
We start with λ = 0: This gives the solution we already know.
Then we consider small, but non-zero λ; develop a
perturbation expansion; and take the limit λ→ 1, with the
hope that the expansion is still meaningful (or convergent) in
this limit. Physicists hope; Mathematicians know!

Let the solutions of H0 be:

H0Ψ
(0)
i = E

(0)
i Ψ

(0)
i

Here the ‘0’ indicates that these eigenvalues and
eigenfunctions are of zeroth-order in the perturbation V. We
will use the short-form:

|Ψ(0)
i 〉 ≡ |i〉
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Raleigh–Schrödinger Perturbation Theory III

Express the solutions of H in a power-series:

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + · · · =

∑
n

λnΨ
(n)
i

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · =

∑
n

λnE
(n)
i

Intermediate normalization: 〈i |Ψi 〉 = 1.

1 =〈i |Ψi 〉

=〈i |i〉+
∞∑
n=1

λn〈i |Ψ(n)
i 〉
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Raleigh–Schrödinger Perturbation Theory IV

Since 〈i |i〉 = 1, and since this result must hold for all λ,
therefore we equate powers of λ to show that

〈i |Ψ(n)
i 〉 = 0 ∀n ≥ 1.

Substitute the expansions into the Schrödinger equation and
equate powers of λ. We get

λ0 : H0|i〉 = E
(0)
i |i〉

λ1 : V|i〉+H0Ψ
(1)
i = E

(1)
i |i〉+ E

(0)
i Ψ

(1)
i

λ2 : H0Ψ
(2)
i + VΨ

(1)
i = E

(2)
i |i〉+ E

(1)
i Ψ

(1)
i + E

(0)
i Ψ

(2)
i
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Raleigh–Schrödinger Perturbation Theory V

Take the inner product with 〈i | to get simple expressions for
the energies at various orders:

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 = 〈i |H0|i〉

E
(1)
i = 〈Ψ(0)

i |V|Ψ
(0)
i 〉 = 〈i |V|i〉

E
(2)
i = 〈Ψ(0)

i |V|Ψ
(1)
i 〉

To find the second-order energy correction we need the
first-order correction to the wavefunction. Expand this
correction in the basis of eigenstates of the unperturbed

Hamiltonian H0 with coeffs c
(1)
n :

Ψ
(1)
i =

∑
n

c
(1)
n |n〉.
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Raleigh–Schrödinger Perturbation Theory VI

Since 〈i |Ψ(n)
i 〉 = 0 (see above), it follows that c

(1)
i = 0. Hence

the state |i〉 does not contribute to the expansion. We
indicate this with a prime in the summation:

|Ψ(1)
i 〉 =

∑
n

′
c
(1)
n |n〉.

Insert this expansion in the (re-arranged) λ1 differential
equation:

(E
(0)
i −H0)|Ψ(1)

i 〉 =(V − E
(1)
i )|i〉

And taking the inner product with 〈m|, show that

c
(1)
m =

〈m|V|i〉
E
(0)
i − E

(0)
m

.
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Raleigh–Schrödinger Perturbation Theory VII

Hence the first-order correction to the wavefunction is given by

|Ψ(1)
i 〉 =

∑
n

′ |n〉〈n|V|i〉
E
(0)
i − E

(0)
n

So we get for the second-order energy correction:

E
(2)
i =

∑
n

′ |〈n|V|i〉|2

E
(0)
i − E

(0)
n

Higher-order corrections to the wavefunction and the energy can
be obtained by keeping more and more terms in the expansion. We
often use these, but we must not assume that they will be
meaningful. The problem here is that we cannot guarantee the
convergence of perturbation expansions. These expansions are
often divergent (bad!) or only asymptotically convergent (use with
care!).
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Raleigh–Schrödinger Perturbation Theory VIII

Q:

Fill in the steps in the above proof for the second-order energy
correction. State any assumptions that may have been made.
You will find a full proof in Ch. 6 of the book by Szabo &
Ostlund.

Q: When do you expect perturbation theory to fail?
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Raleigh–Schrödinger Perturbation Theory IX

Question (PT 1): Polarizability of the hydrogen atom
For an atom (spherically symmetrical) placed in an electric field F
(we will use F so as not to confuse the field with the energy), the
polarizability α appears at second-order in the energy when it is
expanded in terms of the field, that is,

E (F ) = E (0)− 1

2
αF 2 −O(F 4).

The polarizability is a tensor (matrix), but for a spherically
symmetrical system it is diagonal with all elements equal so we
may treat it as a number.
We will now use RSPT to evaluate the polarizability of the
hydrogen atom in its g.s. The Hamiltonian for this system is

H0 = −1

2
∇2 − 1/r ,
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Raleigh–Schrödinger Perturbation Theory X

with g.s. wavefunction Ψ
(0)
0 = e−r/

√
π, and g.s. energy E

(0)
0 . The

electric field F creates a perturbing potential V = Fz . We have
used a field along z .

Show that E
(1)
0 = 0. Why would you expect it to vanish? Use this

result to show that the first-order wavefunction satisfies the
differential equation(

−1

2
∇2 − 1

r
+

1

2

)
Ψ

(1)
0 +

1√
π
Fze−r = 0,

and verify that

Ψ
(1)
0 = − 1√

π

(
1 +

r

2

)
Fze−r

is a solution.
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Raleigh–Schrödinger Perturbation Theory XI

Hence find the second-order energy E
(2)
0 and deduce the

polarizability of the hydrogen atom.

Now use the sum-over-states expression for E
(2)
0 to solve this

problem. You may limit the sum to the p-orbitals of hydrogen.
How does this result compare with the previous one?
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