
CamCASP 5.8

Alston J. Misquitta† and Anthony J. Stone††

†Department of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Road, London E1 4NS
†† University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

April 30, 2015

Abstract

CamCASP is a suite of programs designed to calculate molecular properties (multipoles and frequency-
dependent polarizabilities) in single-site and distributed form, and interaction energies between pairs of molecules,
and thence to construct atom–atom potentials. The CamCASP distribution also includes the programs Pfit,
Casimir, Gdma 2.2, Cluster, and Process.

Copyright c© 2007–2014 Alston J. Misquitta and Anthony J. Stone

Contents
1 Introduction 1

1.1 Authors . 1
1.2 Citations . 1

2 What’s new? 2

3 Outline of the capabilities of CamCASP and other programs 5
3.1 CamCASP limits . 7

4 Installation 7
4.1 Building CamCASP from source . 9

5 Using CamCASP 10
5.1 Workflows . 10
5.2 High-level scripts . 10
5.3 The runcamcasp.py script . 11
5.4 Low-level scripts . 13

6 Data conventions 13

7 CLUSTER: Detailed specification 14
7.1 Prologue . 15
7.2 Molecule definitions . 15
7.3 Geometry manipulations and other transformations . 16
7.4 Job specification . 18
7.5 Energy . 23
7.6 Crystal . 25
7.7 ORIENT . 26
7.8 Finally, . 29

8 Examples 29
8.1 A SAPT(DFT) calculation . 29
8.2 An example properties calculation . 30
8.3 Dispersion coefficients . 35
8.4 Using CLUSTER to obtain the dimer geometry . 37

9 CamCASP program specification 39
9.1 Global data . 39
9.2 Molecule definition . 40
9.3 The EDIT module: Modifying a molecular specification . 42
9.4 Density-fitting . 43
9.5 Propagator settings . 45
9.6 Quadrature settings . 49
9.7 The ISA module . 49
9.8 Multipole moments . 52
9.9 Display . 53
9.10 Polarizabilities . 54
9.11 Lattice . 58
9.12 Numerical integration grid . 59
9.13 Electrostatic interaction . 59
9.14 First-order exchange (exchange-repulsion) . 60
9.15 Second-order induction energy . 61
9.16 Second-order dispersion energy . 63
9.17 Energy scan . 64
9.18 Overlap model . 67
9.19 Integrals . 70

10 PROCESS: Syntax 72

11 CASIMIR 76

A Basis sets 78

B Dispersion coefficients: in detail 79

C Older Scripts 86
C.1 High-level scripts . 86
C.2 Low-level scripts . 86

3

1 Introduction

CamCASP is a suite of programs for the calculation of interaction energies between pairs of molecules, and molec-
ular properties (multipoles and frequency-dependent polarizabilities) in single-site and distributed form. The Cam-
CASP distribution also includes the programs Pfit, Casimir, Gdma 2.2, Cluster, and Process, and together these
form a package for the ab initio generation of site–site force fields between organic molecules containing up to
about 60 atoms.

1.1 Authors

The CamCASP suite of programs, which includes Pfit, Casimir, Gdma 2.2, Process, and Cluster, has been writ-
ten by Alston J. Misquitta and Anthony J. Stone with important contributions from Robert Bukowski, Wojciech
Cencek, the GAMESS(US) team and the GAUSSINT team.

1.2 Citations

This code is provided as a service to the scientific community and our only recompense, such as it is, is in citations.
Therefore, if you use any results from CamCASP in your publications we request that you cite the following papers.
The choice of citations would depend on the parts of the code you have used for the published results.

• SAPT(DFT) energies

◦ A. J. Misquitta and K. Szalewicz. Intermolecular forces from asymptotically corrected density func-
tional description of monomers. Chem. Phys. Lett., 357:301–306, 2002

◦ A. J. Misquitta, B. Jeziorski, and K. Szalewicz. Dispersion energy from density-functional theory
description of monomers. Phys. Rev. Lett., 91:33201, 2003

◦ A. J. Misquitta and K. Szalewicz. Symmetry-adapted perturbation-theory calculations of intermolecu-
lar forces employing density-functional description of monomers. J. Chem. Phys., 122:214109, 2005

◦ A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz. Intermolecular potentials based on
symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional
theory. J. Chem. Phys., 123:214103, 2005

◦ R. Bukowski, R. Podeszwa, and K. Szalewicz. Efficient generation of the coupled Kohn–Sham dynamic
susceptibility functions and dispersion energy with density fitting. Chem. Phys. Lett., 414:111–116,
2005

• WSM polarizabilities

◦ A. J. Misquitta and A. J. Stone. Distributed polarizabilities obtained using a constrained density-fitting
algorithm. J. Chem. Phys., 124:024111, 2006

◦ A. J. Misquitta and A. J. Stone. Accurate induction energies for small organic molecules: I. Theory.
J. Chem. Theory Comput., 4:7–18, 2008a

◦ A. J. Misquitta, A. J. Stone, and S. L. Price. Accurate induction energies for small organic molecules.
2. Development and testing of distributed polarizability models against SAPT(DFT) energies. J. Chem.
Theory Comput., 4:19–32, 2008a. doi: 10.1021/ct700105f

• WSM Dispersion models

◦ A. J. Misquitta and A. J. Stone. Dispersion energies for small organic molecules: first row atoms.
Molec. Phys., 106:1631 – 1643, 2008b

• SRLO polarizabilities

◦ A. J. Misquitta and A. J. Stone. Distributed polarizabilities obtained using a constrained density-fitting
algorithm. J. Chem. Phys., 124:024111, 2006

◦ Fazle Rob and Krzysztof Szalewicz. Asymptotic dispersion energies from distributed polarizabilities.
Chem. Phys. Lett., 000:000–000, 2013

1

• GDMA multipole moments

◦ A. J. Stone. Distributed multipole analysis: Stability for large basis sets. J. Chem. Theory Comput., 1:
1128–1132, 2005

• Potentials & Overlap models

◦ A. J. Stone and A. J. Misquitta. Atom–atom potentials from ab initio calculations. Int. Rev. Phys.
Chem., 26:193–222, 2007

◦ A. J. Misquitta, G. W. A. Welch, A. J. Stone, and S. L. Price. A first principles prediction of the crystal
structure of C6Br2ClFH2. Chem. Phys. Lett., 456:105–109, 2008b

• Charge-tranfer via regularisation

◦ A. J. Misquitta. Charge-transfer from regularized symmetry-adapted perturbation theory. J. Chem.
Theory Comput., 9:5313–5326, 2013. doi: 10.1021/ct400704a

• Iterated stockholder atom (ISA)

◦ Alston J. Misquitta, Anthony J. Stone, and Farhang Fazeli. Distributed multipoles from a robust basis-
space implementation of the iterated stockholder atoms procedure. J. Chem. Theory Comput., 2014.
doi: 10.1021/ct5008444

Furthermore, if you make any changes or additions to the code and would like to share them for inclusion in future
releases, please submit the modifications to us with suitable documentation and examples.

2 What’s new?

All changes are reported with respect to the previous version. The base version is 5.2.00.

Version 5.8.23

There are only a few major changes in this version compared with the earlier release (5.7.00). These are

• The iterated stockholder atom (ISA) module, described in sec. 9.7, provides an implementation of the
density-partitioning technique proposed by Lillestolen and Wheatley [Lillestolen and Wheatley, 2009]. The
algorithm we have implemented in CamCASP is described in [Misquitta et al., 2014] and probably is one of
the most stable and accurate implementations of this partitioning method currently available.

• The concept of atomic neighbourhoods is now used to make the calculation of certain types of integrals scale
linearly with system size. This concept is normally inactive, but can be activated using the EDIT module
described in sec. 9.3. At present, the only module that can benefit from this feature is the ISA module.

• The DISPLAY module allows the calculation of molecular and atomic iso-density surfaces. These can be
visualised using the Orient program using suitable input files. This provides a powerful way of visualising
the ISA atomic densities.

• The ALDA kernel used in the response calculations has been made significantly more numerically stable.
Stringent tests now show that residual numerical noise arising from the numerical integration is of the order
0.01 kJ mol−1.

• As always, a number of bugs have been fixed as part of this release, and, no doubt, new ones introduced.

2

Version 5.7.00

The numerical stability and accuracy of the code has been improved, and it is now considerably faster, particularly
when calculating distributed polarizabilities. The ALDA+CHF kernel option is coded within CamCASP and no
longer requires the hessian from Dalton. This is now the default, though the ALDAX+CHF option is still available.

Most of the scripts for job submission and related tasks have been rewritten in Python. The runcamcasp.py script
can now be used to submit most forms of CamCASP calculation.

All CamCASP calculations can now be carried out in conjunction with the NWChem, Dalton or Gamess(US)
programs.

The ‘self-repulsion plus local orthogonality’ (SRLO) density-fitting/distribution method of Rob & Szalewicz [Rob
and Szalewicz, 2013] is available. See the DENSITY-FITTING module description for more details.

CamCASP now uses significantly less disk space for temporary files. As a consequence, multiple CamCASP jobs
can be run on the same file system without incurring a significant performance penalty.

There are various bug corrections and other minor enhancements.

Detailed changes:

• The linear-response Kohn–Sham kernel is now calculated internally using the ALDA(+CHF) approximation
with the LDA defined to contain the Slater exchange and PW91 correlation functionals. This kernel is now
the default. As all integrals are evaluated internally, CamCASP no longer requires hessians from the DFT
code, though this option is still available. Note that the Dalton program defines the LDA with the VWN
correlation functional.

• We have made significant improvements to the numerical accuracy and stability of the response calculations.
In earlier versions of CamCASP the ALDAX(+CHF) kernel could result in low levels of numerical noise in
the induction and dispersion energies. This noise could be seen in weakly bound systems and could be as
large as a few tenths of a kJ mol−1. In this version of the code this noise is at least an order of magnitude
smaller.

• The computational efficiency of the distributed polarizability module has been dramatically improved. It is
currently a few hundred times faster.

• The SRLO method can be used to calculate distributed, non-local polarizabilities. In this method, the site-
self-repulsion constraint from Misquitta & Stone [Misquitta and Stone, 2006] is combined with an additional
localization constraint by Rob & Szalewicz [Rob and Szalewicz, 2013] to result in a density-fitting-based
distribution scheme that results in distributed, non-local polarizabilities with very small charge-flow terms.

• The file handling module in CamCASP has been replaced by one which is significantly more robust, simpler
and faster.

• We have now provided a number of additional examples.

• Many of the high-level scripts that drive the calculations have now been replaced with Python scripts. These
require Python 2.7 or later.

Version 5.6.00

The code has now been tested on fairly large systems and numerous changes have been made and bugs fixed to
make these large calculations possible. Examples of recent work includes calculations of molecular properties of
C60 and salsalate (2-(2-hydroxybenzoyl)oxybenzoic acid, structure on left), and energy scans (without exchange
energies) of the pentapyralene (C28H16, structure on right) and C60 dimers.

3

While such calculations are possible with this version of the code, please see the discussion on the limitations of
CamCASP in Sec. 3.1 below.

In earlier versions of CamCASP the second-order exchange-induction energy, E(2)
ind,exch, was calculated by scaling

the uncoupled energy. We now calculate this energy without scaling. This is more accurate in strongly hydrogen-
bonded systems. In practice, due to error cancellations in the second-order exchange-induction energy and the
higher orders (calculated via the δHF

int approach), the two approaches lead to almost the same total exchange-
induction energies. Nevertheless, we do not recommend scaling any more.

A major addition to this version is the option of regularized second-order induction energies. Through regulariza-
tion we can define the second-order charge-transfer energy within SAPT or SAPT(DFT). A standard SAPT(DFT)
interaction energy calculation will automatically include calculation of the regularized second-order induction and
exchange-induction energies.

The Cluster program now has the capacity to perform simple energy calculations with isotropic dispersion models.
While Orient remains the main program for energy evaluations, Cluster provides useful tools for creating and
using dispersion models to be paired with density functionals, and allows calculations of dispersion energy and
pressure contributions to crystals.

Summary of enhancements:

• Interfaces to Gamess(US) and NWChem. The interface to Dalton has been re-written and improved. All
interfaces now use ASCII (plain text) files to store orbitals and energies and are consequently transferable
across computational platforms.

• Molecular orbital space truncations are allowed. This is handled automatically in the NWChem, Dalton and
Gamess(US) interfaces. Orbital-space truncations improve the stability of the SCF calculations and subse-
quent CamCASP calculations. They are particularly important in large basis calculations.

• ENERGY-SCAN is now more robust. First-order energies can be calculated in a dimer-centered auxiliary basis
in the scan module. The second-order energies cannot be calculated if the scan involves molecular rotations.

• Coupled second-order exchange-induction energy, E(2)
ind,exch, without scaling.

• Second-order induction energies (E(2)
ind,pol and E(2)

ind,exch) can be regularized using the R-SRS theory of Patkowski
et al. [2001a].

• The POLARIZABILITY module allows calculations of the point responses to a point charge perturbation. This
is useful for visualization of polarization in the molecule using the Orient program. See §9.10.1 for details.

• Additions to Cluster to aid the construction of dispersion models (using isotropic Cn coefficients (n =

6 · · · 12)) and a variety of damping models. Dispersion energy calculations for clusters and crystals. See
sections §7.5 and §7.6.

• More basis sets added. In particular, some of the NWChem basis sets are now included.

• More examples.

Version 5.5.00

Many improvements in the code. It is no longer necessary to use Dalton to do the coupled Kohn-Sham calculation
— Dalton is only needed to calculate the eigenvalues and eigenvectors. The top-level scripts have been streamlined.
Most calculations can be run or set up using the runcamcasp.py script, and all data affecting the calculation itself
(such as ionization potentials) are provided in the cluster file. Details:

• Kernel integrals constructed in CamCASP.

• New propagator module: implements the adiabatic local density approximation ALDA(X) in the manner
described by Bukowski et al. [2005].

◦ There are more options in this module.

◦ The PBE/AC ALDAX route is the fastest and consumes the least memory.

4

◦ PBE0/AC ALDAX+CHF is fast, but memory intensive.

◦ The old ALDA propagator module can still be accessed. This delivers the highest accuracy, but is slow
and requires integrals from DALTON.

• 10-fold speed-up in calculating 2 and 3-centre Coulomb integrals.

• Latest version compiles with ifort. Binary is almost twice as fast as with pgf90.

• The speed of the distribution algorithm is improved by two orders of magnitude.

• Better scripts for easier use of the code.

• Energy scan for first order energies faster by a factor of 10.

• New program: res2disp added. Source code in src/res2disp/.

Calculates dispersion energies of crystals using isotropic dispersion models.

Version 5.3.01

First-order interaction energy components can now be scanned using the ENERGY-SCAN module using auxiliary
bases with either Cartesian or spherical GTOs. So can the overlap integrals. We will shortly be releasing a version
that allows the second-order energies to be scanned using this module. We have also fixed some serious bugs in
that module that affected the exchange energies.

The Cluster program has many modifications and a new command MAKE-UNIQUE that modifies all site labels so
as to make them unique. The JOIN command now accepts multiple molecule names.

The other modules that have been modified are the OVERLAP-MODEL and the integral modules.

Some of the parameters of the program have been changed to allow larger systems to be used.

Version 5.3.00

There have been many enhancements to the previous version. We have also fixed a number of serious bugs. A large
number of basis sets have been added to the basis set library and we encourage the user to experiment with these.

3 Outline of the capabilities of CamCASP and other programs

The following types of calculation are possible with CamCASP:

• Dimer energies:
The first-order electrostatic and exchange energies, E(1)

elst and E(1)
exch, and the second-order dispersion and

induction energies, E(2)
ind,tot and E(2)

disp,tot (including their exchange terms). All are calculated using density-
fitting, and the second-order dispersion can in principle be calculated without density-fitting, though this
part of the code has not been tested in a long time. The δHF

int correction can also be calculated.

• Molecular properties:

◦ Multipole moments: Total and distributed multipole moments can be calculated using a constrained
density-fitting algorithm and the Gdma 2.2 code, which has been interfaced to CamCASP.

◦ Frequency-dependent polarizabilities: Total and distributed frequency-dependent polarizabilities are
calculated using a constrained density-fitting algorithm. The Williams–Stone–Misquitta (WSM) method
can be used to obtain the most accurate polarizability model within constraints imposed by the user.

◦ Point-to-point polarizabilities: Responses to a frequency-dependent point-charge perturbation—called
point-to-point polarizabilities—can be calculated. These are needed by the Pfit program when opti-
mizing the distributed polarizabilities.

5

The Orient program is needed for some aspects of the property calculations. It is distributed separately but
access to it is provided using the same credentials as for CamCASP.

• Energy scans:
Surfaces around a molecule can be defined (or supplied as a grid of points) and all dimer energies can be
calculated on this surface, using a point charge (for the induction and electrostatics only) or a probe molecule.
The total and distributed charge-density overlap is also scanned.

• Atom–atom potentials:
Using the results of the energy scans and molecular properties, atom–atom potentials can be obtained using
the density overlap model to model the short-range energies. The Orient program is used for some parts of
this calculation.

• Theory levels:
In all cases, calculations can be performed using either the coupled/uncoupled Kohn–Sham (CKS/UCKS) or
coupled/uncoupled Hartree–Fock propagators. In practice, the CKS propagator will be used.

• Density-fitted Integral Package:
The density-fitted (DF) integral package allows the calculation of 2-electron 4-index integrals in very effi-
ciently, both in computation time and memory usage. With this package, the intermediate TRAN step is no
longer needed for the Hessian calculation, thereby saving a lot of time. In principle, the Sapt2006 program
can also be run using integrals obtained from this package, but this would involve some more effort.

At present, the DF-integral package computes more than 30 kinds of integral.

The functionality of CamCASP is greatly enhanced when used with the Pfit and Orient programs. Only some
of the many features of Orient—those most useful for the calculation and analysis of intermolecular forces—are
listed here.

• Pfit

◦ Fitting of polarizability models: At present, polarizability models are not fitted from scratch, but polar-
izability models from the CamCASP code can be optimised using Pfit and the point-to-point polariz-
abilities from CamCASP.

◦ Dispersion coefficients: These can be calculated by Pfit using frequency-dependent distributed polar-
izabilities from CamCASP. This function is better performed by the Casimir program.

• Casimir

◦ Dispersion coefficients: C6, C7, etc. to C12. Dispersion coefficients between pairs of identical or dis-
similar molecules can be calculated by Casimir using frequency-dependent distributed polarizabilities
from CamCASP that have been localized using Orient and possibly refined using Pfit. The input file for
Casimir can be created with the Process program from localized frequency-dependent polarizabilities.
Minor changes to the input files allow the calculation of mixed-molecule dispersion coefficients.

• Dispersion

◦ Dispersion energies using non-local polarizabilities: This program allows two and three-body disper-
sion energy calculations using frequency-dependent non-local polarizabilities such as those calculated
using the distributed polarizability module in CamCASP. These calculations include contributions from
the charge-flow polarizabilities.

• Orient

◦ Local polarizabilities: The distributed polarizabilities from CamCASP include non-local contribu-
tions. These can be transformed away using the localization module in Orient.

◦ Simplification of models: The polarizability models can be modified or simplified using Orient.

◦ Displaying energies: Energies can be displayed in 3-D using the OpenGL display module in Orient.

◦ Calculations of asymptotic energies: Using the distributed multipoles and polarizabilities, interaction
energies can be computed in the long-range (asymptotic) approximation.

Miscellaneous programs:

6

• Process: This code is an interface code to process polarizabilities from CamCASP or (localized/modified)
polarizabilities from Orient into a form Pfit can use. It also performs transformations of the polarizabilities
and is able to write out polarizabilities in LATEX format for publications.

• Cluster: This is the program that handles the user’s input data and generates the subsidiary data files needed
by other parts of the package and by the auxiliary ab initio codes. It also enables the user to conduct elemen-
tary manipulations of the molecule geometry, build clusters, determine rotational and translation axes, and
write output in a form suitable for CamCASP, Orient, and any program that can read PDB files for imaging.

An important function of Cluster is to create the input files for CamCASP, Dalton (versions 2.0 and 2013),
NWChem and Sapt2006 programs. All the user need do is define the dimer within Cluster, perform any
manipulations that might be needed, and then use the RUN-TYPE command to generate the files for the
calculation. This greatly simplifies the file generation process and removes the chance of errors in the rather
complicated input file structure of Sapt2006, Dalton and (to a lesser extent) NWChem and CamCASP.

3.1 CamCASP limits

The following limits apply only to those parts of the calculation that require integrals of the type OVOV or OOVV.
These occur in the hybrid kernels and in the second-order exchange-dispersion and exchange-induction energies.

If only the non-exchange energies are required (E(1)
elst, E(2)

ind,pol and E(2)
disp,pol) and the ALDAX kernel is used, the limits

are significantly higher.

Sizes assume that individual arrays that need to be stored completely in memory in the present version of the code
are limited in size to 16 GB.

• Main basis size: N = no + nv where nonv ≤ 131072
Examples:

◦ N-methylpropanamide: no = 24, therefore N ≤ 5461.

◦ Carbamazepine: no = 62, therefore N ≤ 2114.

◦ C60: no = 180, so N ≤ 728.

• Auxiliary basis size: M ≤ 131072. In practice the limit will be lower for computational reasons.

• Computational bottlenecks:

◦ Hessians: Calculation of the hybrid Hessians (ALDA+CHF) is an O(n3
on3

v) process. This can be reduced
using the methods recently developed by Bukowski et al. [2005]. This has been done for the ALDAX
and ALDA kernels which can be calculated in O(M2nonv) effort.

◦ 2-electron 4-index integrals: These are required for the exchange energies. In particular the second-
order exchange energies.

• Other limitations

◦ Not parallelised.

◦ While reasonably large calculations are possible with this version of the code (see the examples given
above), bear in mind that this still is a serial code and that calculations of the second-order exchange
energies for large systems will be difficult as they will typically require more resources and a re-
programming of the relevant CamCASP modules to make better use of memory and disk resources.

4 Installation

The CamCASP package comprises several different programs, and also uses a number of third-party programs —
specifically, an ab initio package for the DFT or wavefunction calculations and the Orient program. While we
have interfaced CamCASP to Dalton, NWChem, Gamess(US) and (in part only) the Gaussian programs, the scripts
supplied with CamCASP support Dalton and NWChem more fully than the others. Consequently, we recommend
that the Dalton (2.0 or 2013) or NWChem ab initio packages are used, and this is assumed below. Several Python
scripts are provided to simplify the task of setting up the various files that are needed for the calculation, and

7

feeding them to the programs that do the work. The scripts require Python 2.7 or later. In order for this to work
successfully, a few conventions need to be followed in the way that your computer is organised, and because of
the use of third-party programs the installation procedure cannot be as fully automated as you might wish. The
following instructions apply to Unix and Linux systems; they can be followed with little change for Mac OS X and
Windows systems by working from a terminal window on the Mac or by using a Unix emulator such as Cygwin
under Windows.

1. The first step is to unpack the CamCASP tarfile:
tar xzf camcasp-5.8-base.tgz

This will create a new directory camcasp-5.8 containing the architecture-independent files, except for those
needed for building the source. It doesn’t include the program binaries. For these, you need to download the
appropriate binary package for your architecture, and unpack that:

tar xzf camcasp-5.8-<arch>-<compiler>.tgz
This will unpack into the same directory, camcasp-5.8.

2. Next, you need to add the CamCASP bin directory to your path; for example:
export PATH=/usr/local/camcasp-5.8/bin:$PATH

This can be included in your initialization file. This would probably be your .bashrc file if you use the Bash
shell.

3. Install Orient and either Dalton or NWChem if you don’t already have them installed. Dalton 2.0 and Dalton-
2013 require slightly different input, but CamCASP can handle either.

4. You could also install the Gamess(US) program, but bear in mind that for the present, we do not include any
examples of scripts to perform calculations with Gamess(US) and CamCASP.

5. Dalton-specific: The primary need for the Sapt2006 program is the patch to Dalton 2.0 included in the distri-
bution. This allows calculations using the ALDA/ALDA+CHF kernels with xc-kernel integrals directly from
Dalton and allows the Fermi–Amaldi (FA) asymptotic correction with the Tozer & Handy splicing scheme
[Tozer and Handy, 1998]. The patch for Dalton needs to be applied, and Dalton recompiled if necessary. For
sources for these programs see
http://www.kjemi.uio.no/software/dalton/dalton.html
http://www-stone.ch.cam.ac.uk/programs.html#Orient4
http://www.physics.udel.edu/~szalewic/SAPT/SAPT.html

Dalton 2013 doesn’t require the patch, as it has the asymptotic correction already included, and CamCASP can
now handle the ALDA and ALDA+CHF kernel itself.

6. NWChem-specific: The CS00 asymptotic correction [Casida and Salahub, 2000] will be used with NWChem.
Ideally an energy shift should be provided for this method; it is the sum of the (positive) ionization energy
and the (negative) HOMO eigenvalue. If this is not provided an empirical relationship between the HOMO
eigenvalue and the IP is used instead. Neither is as good an approximation as the asymptotic correction scheme
used with Dalton (above). The CS00 scheme is similar to the GRAC scheme of Gruning et al. [2001].

7. Now you need to define some environment variables.

• CAMCASP should be set to the full pathname of the base directory for the CamCASP package.
• SCRATCH should be set to the full pathname of a scratch directory that can be used for temporary files.
• DALTON2013 should be set to the full pathname of the directory containing the Dalton-2013 program, if

installed.
• DALTON2006 should be set to the full pathname of the directory containing the Dalton 2.0 program, if

installed.
• NWCHEM should be set to the full pathname of the directory containing the NWChem program, if installed.
• SAPT should be set to the full pathname of the directory containing the Sapt2006 program, if installed.
• ORIENT should be set to the full pathname of the directory containing the Orient program.

These variables can all be set in your initialization script, so that you don’t need to set them every session. For
example:
export CAMCASP=/usr/local/camcasp-5.8

You may also also need to add the Sapt2006 bin directory to your path:
export PATH=$SAPT/bin:$PATH

8

8. Finally you need to set up some symbolic links (aliases) in the CamCASP bin directory to the programs that
are used by CamCASP. This only needs to be done once. To do so, run the command
setup.py

(after changing the PATH and setting the environment variables as explained above). The script checks that the
given paths are correct. This script will also ask whether your system uses the PBS (Portable Batch System) or
GE (Grid Engine) batch scheduling systems. If you intend to run all your calculations in the background, or via
the Linux batch command, choose ‘none’. If you use some other scheduler, you will need to modify one of the
strings header["PBS"] or header["GE"] in the bin/camcasp.py script. The header will be prefixed to your
job script before it is submitted. In any case, ensure that the environment variable SCHEDULER is either unset or
set to the scheduler you require, as appropriate.

9. Testing the installation

Once everything is set up, you can run some tests that will exercise all the programs. Go to the CamCASP
subdirectory examples and follow the instructions in the README file. There are tests for single-configuration
dimer energy calculations, for properties, and for energy scans over a set of dimer configurations.

4.1 Building CamCASP from source

Executable binaries of the CamCASP, Process, Casimir, Pfit and Cluster programs are provided for PCs running
Linux and for Mac OS X. Where possible these are static binaries and don’t require additional libraries. If you
need to compile the package yourself, you will need to obtain access to the source. This is not normally available,
but may be permitted on request. The Makefile supplied with the CamCASP source files will build the CamCASP,
Process, Casimir, Pfit and Cluster programs. Here are some brief instructions.

The build will happen in a directory $CAMCASP/arch/compiler where arch is the machine architecture and compiler
is the name of the compiler chosen. The architecture and compiler must be specified, either on the make command
line:
make all ARCH=arch COMPILER=compiler

by changing the beginning of the Makefile to set the default values, or by setting environment variables ARCH and
COMPILER.

The compiler flags used are set in the file $CAMCASP/arch/compiler/exe/Flags. You will have to set machine-
specific flags here. The MACHINE variable provides an alternative way to select flags for different platforms, using
the same Flags file — see the examples provided. On a Linux machine the name of the machine should be de-
termined automatically, but if this doesn’t work you can specify it on the make command line. Probably the only
thing that will need changing is the LIBS flag that sets the libraries to be linked to.

Architecture options are: x86-32, x86-64 and osx.

Compiler options are: pgf90, gfortran, and ifort.

• The Portland pgf90 compiler is reasonably fast, but doesn’t always keep to the standard.

• The nagfor compiler unfortunately can’t be used, as it won’t accept the very old legacy routine gaussint.F,
which is still used for some integral calculations.

• The gfortran compiler is under active development, and sometimes new bugs are introduced, but it gener-
ally works well, produces well optimized binaries and it’s free.

• The ifort compiler generates fast code.

We recommend either ifort or gfortran.

For other compilers, you will need to make an arch/compiler/exe directory and an arch/compiler/exe/Flags
file.

CamCASP needs a full installation of the Lapack and Blas libraries. It is crucial that you install a fast and reliable
set of libraries. We recommend the Atlas libraries combined with the Lapack libraries from Netlib.org. The Atlas
library contains a full Blas but by default only a partial Lapack installation that doesn’t include all the routines used
by CamCASP. To include the full Lapack library, however, it is only necessary to download the source package
from netlib.org and tell Atlas where it is. Instructions are provided on the Atlas webpage. It’s quite easy and won’t

9

Figure 1: Workflow for CamCASP calculations. (a) Basic workflow. (b) The Cluster and Process programs, and
associated scripts, generate most of the data files needed for the calculations.

take much time. Under OS X, the Lapack and Blas libraries are available via the “-framework Accelerate” linker
option, but you may wish to provide the Atlas libraries instead.

We used to recommended the GotoBLAS2 library of Kazushige Goto, available from http://www.tacc.utexas.edu/tacc-
projects/, but this library is no longer under active development.

We do not recommend the Intel MKL library. This may work and could well result in faster execution times
compared with Atlas, but we have encountered memory leaks associated with this library. If you use the MKL
libraries and encounter errors please switch to Atlas and check to see if these errors persist.

To compile the whole package, use
make all ARCH=arch COMPILER=compiler

or just
make all

if you have specified ARCH and COMPILER in the Makefile or via environment variables. To compile individual
components of the package, use
make name [ARCH=arch COMPILER=compiler]
where name is camcasp, cluster, casimir, process or pfit.

Cluster seems to pose a problem for the Portland compiler on the Opteron platform. We have not yet been able to
sort this out.

5 Using CamCASP

5.1 Workflows

A properties or interaction energy calculation generally involves the use of several programs. Fig. 1(a) shows the
workflow for a properties calculation. Each program requires its own input file, and these can be quite difficult to
write without errors. The CamCASP package includes the Process and Cluster programs, and a number of other
scripts, which can be used to generate the necessary data files and invoke the programs (Fig. 1(b)).

Examples will be provided in §8.

5.2 High-level scripts

Most CamCASP calculations can be set up and run using the high-level scripts in conjunction with one simple data
file.

10

The following scripts are currently available. They can all be executed with the single argument --help to print
brief usage details and exit.

The older bash scripts are still available and are described in Appendix C. While these are still maintained, they
will probably be removed from subsequent distributions.

The Python scripts require python 2.7 with the argparse module installed. We have not tested the
scripts with python 3.x. Since earlier versions of Python do not have the argparse module, these
scripts will not work. In this case, consider either upgrading your Python installation, or use the older
bash scripts as described in Appendix C. But bear in mind that the latter option is a stop-gap measure
only as we will eliminate these scripts in a subsequent release.

• runcamcasp.py
This python script supersedes the runSAPT script used previously to run a complete CamCASP calculation.
It can be used to carry out calculations of the following types:

properties: multipole moments, polarizabilities, etc. of single molecules.

sapt-dft: symmetry-adapted perturbation theory of dimer interaction energies, using molecular
wavefunctions obtained by density functional theory.

sapt: symmetry-adapted perturbation theory using Hartree-Fock wavefunctions and perturbative
correlation corrections.

delta-hf: calculation of the δHF estimate of higher-order induction energy terms.

supermolecule: standard supermolecule calculation of dimer energies, with counterpoise correction for
BSSE.

See below for more details.

• execute.py
This script is invoked when the job is run, and carries out the Dalton or NWChem calculations, converts the
resulting eigenvector files into a form convenient for CamCASP, and then runs the CamCASP calculation.
All of this is done in a subdirectory of the $SCRATCH directory, and the output files are copied back to the
specified job directory at the end of the calculation. Except in properties calculations, two or three DFT or
HF calculations are needed, and execute.py starts them as separate processes so that they run in parallel.

• extract_saptdft.py
The output of a SAPT(DFT) calculation can be analysed using the script extract_saptdft.py. It picks
out the energy terms from the CamCASP output file and displays them in a compact form. The arguments
are directories containing SAPT(DFT) calculations, as previously set up by runcamcasp.py. Often it is
sufficient to run the command as extract_saptdft.py *, as the script ignores plain files and merely
issues a warning for directories that don’t contain completed SAPT(DFT) calculations.

• localize.py
Using the polarizability files from a properties calculation, this script will generate local polarizabilities
(static and dynamic). See §8.2.1 on p. 31 for details. The dynamic polarizabilities are then used to construct
dispersion coefficients, if required.

• batch_sapt.py
This is one of many batch scripts that can be used to schedule multiple calculations. Please see the bin
directory for others. batch_sapt.py can be used to perform interaction energy calculations using a template
Cluster input file and a geometry file. The other batch scripts work in a similar way. It is worth testing batch
scripts before using them for a real calculation.

5.3 The runcamcasp.py script

The command in its simplest form is just
runcamcasp.py JOB

JOB is the name of the job, and is prefixed to files created for the job. By default it is also the name of the directory
that is created to contain the job files, but that can be changed using the --directory or -d option. You need to

11

provide one simple data file, normally JOB.clt, to define the system and specify the calculation. For details of this
file see §7 and the example in §8.1 below.

The general form of this command is
runcamcasp.py JOB options
where JOB is the job name — that is, the file-prefix specified in the Cluster input file. The main options are

--clt file Specify the cluster file for the job. Default is JOB.clt.

--directory or -d dir Directory for the job files. If the --restart option is used it must exist already; other-
wise it is newly created. If a directory of the same name already exists, it can be deleted with all its contents,
or renamed, or the job may be aborted.

--ifexists [delete | save | abort | ask] Specify what to do if the job directory already exists. The
default is to ask. If save is specified, the existing directory, dir, is renamed as dir_nnn, where nnn is the first
suffix in the series 001, 002, etc., after any dir_nnn that already exists.

--restart This will start or restart the calculation in the specified directory, carrying out any Dalton or NWChem
calculations that haven’t been completed, and repeating the CamCASP calculation regardless. This allows
the calculation to be repeated with a modified CamCASP data file JOB.cks if required.

--queue or -q queue The job is to be submitted to the specified queue (see below), or run in the background if
“-q bg” is specified.

--memory or -M nnnn Memory required for the job in MB.

--direct Use direct integral management.

By default, this script uses a Cluster input file with the name JOB.clt. If this is not the case, use the “--clt file”
option to specify the name of the Cluster file.

This carries out the following steps, unless --restart is specified:

• Create a new directory dir for the job. By default this is called JOB, but a different directory name can be
given using the -d dir flag. If the directory already exists, you’re given the option of either deleting that
directory and its contents first, or renaming it as dir_nnn, where nnn is a digit string that doesn’t clash with
any existing file or directory. All the files for the job will now be created in the specified directory or a
subdirectory of it.

• Copy the Cluster file into the new directory, chdir into it, and run the cluster program to generate the data
files for the SCF calculations, and the CamCASP input file JOB.cks.

• If the Dalton program is to be used, functions defined in camcasp.py are called to generate the Dalton
.mol and .dal input files.

Then, whether or not --restart is specified:

• Call the submit function in camcasp.py to create the script to do the calculation, and to submit the job to
the specified queue.

The main part of the calculation is carried out by the execute.py script. It begins by defining some directory names.
The MAINDIR is the directory from which the job is run. The files in this directory are all copied to a scratch
directory $SCRATCH/JOB_str, which is created if necessary, and the calculations are carried out there. where str
is a unique identifier, usually the time at which the job starts. Many big files are generated in the course of the
calculation, so there needs to be plenty of space available here. At the end of the calculation, the useful output files
are copied back to $MAINDIR/OUT, and the scratch directory and its contents are deleted.

If --restart was specified, the runcamcasp.py script scans the copy of the .clt file in the job directory (not
the original one, which may have been changed or deleted) in order to assemble information about the calculation.
However no files are generated, so any changes made are retained. In particular, the .cks file may be modified as
required before restarting. In a restarted job, completed DFT or HF calculations are not repeated, but incomplete
ones are restarted. The CamCASP calculation itself is always repeated.

12

5.3.1 Job queues

If your machine operates a queueing system for batch jobs, the -q or --queue flag may be used to specify the
queue for the calculation. If the computer uses the PBS or GE batch queuing system, set the environment variable
SCHEDULER to PBS or GE. Headers for these are defined in the camcasp.py Python module, but they may need
to be changed to suit your system. The queues available will depend on your operating system. On a workstation
running Linux, there is a batch queue, to which a series of jobs may be submitted; they will run in turn as the
load on the computer permits. The queue can also be specified as “-bg”, which causes the job to be run in the
background — convenient for small jobs. If “-q none” is specified, the files are all set up, but the calculation
isn’t run immediately; instead a script submit.bash is left in the current directory, and you can execute this when
you’re ready to run the job; for example:
./submit.bash -q bg

If you regularly use a particular queue, you can set the environment variable QUEUE to that value, and that will
become the default for the --queue option.

5.4 Low-level scripts

Some of the scripts and programs provided in the CamCASP package are low-level ones that just perform one step
in setting up the job, for example by generating further files that are needed for the calculations. If you need to do
something unusual you may have to use the lower-level scripts directly, but for most purposes the high-level scripts
will suffice.

In all the following, JOB is the job-name, which identifies all the files belonging to the job — in particular, the
cluster input file, usually called JOB.clt. Most jobs involve a large number of files, however, so it is not a good
idea to rely on the job-name to distinguish files for different jobs from each other. Recommended practice is to run
every job in its own private directory (folder).

The starting-point for all tasks is the ‘cluster’ file, conventionally given the .clt suffix, which contains information
about the molecules involved, the basis sets to be used, and other details. Details are in §7. Once you have prepared
the input file for Cluster, called for example setup.clt, the cluster command is the first step in setting up the
job:
cluster < setup.clt

(It will usually be called by a script rather than directly.) If the Dalton program is to be used, it will produce a file
called JOB.DALtemplate, where JOB is the file prefix specified (or implied) in the Cluster data file. It will also
produce a number of other files — for example JOB.cks and JOB_P.data — depending on the information in
the .clt file.

The runcamcasp.py script uses a number of functions defined in the bin/camcasp.py Python module. There are
functions to generate the full data files for Dalton calculations from the JOB.DALtemplate file and to set up the
shell script that is submitted to the appropriate queue to carry out the calculation. These will usually be called from
the runcamcasp.py script, but they could be called from a Python interactive session with the camcasp module
loaded.

For Dalton DFT calculations using the asymptotically-corrected PBE0 functional it is necessary to specify the
molecular ionization potential in order to set up the asymptotic correction properly. The file misc/IP.txt con-
tains a list of ionization potentials for some small molecules, and many others are available in the NIST Chemistry
Webbook at webbook.nist.gov/chemistry/. If the IP cannot be found there or elsewhere in the literature, it is nec-
essary to calculate it. The calculation requires the vertical ionization energy, i.e. the difference in energy between
the neutral molecule and its cation at the same geometry.

Calculations using NWChem use a different asymptotic correction scheme. This ideally uses an energy shift which
is the sum of the (positive) ionization energy and the (negative) HOMO energy for the neutral molecule, but
NWChem can estimate the shift using an empirical scheme if the shift is not specified. In our experience the
asymptotic correction scheme used by Dalton is more satisfactory.

6 Data conventions

General notes on the conventions used for describing the form of input files:

13

• All data values are free format. Items may usually be given in any logical order.

• Comments may be included in the file. They start with “!�” (note the space) and continue to the end of the
line.

• Items in square brackets are optional. (The square brackets themselves should not be included.)

• Items separated by “|” are alternatives. If a list of such items is shown in braces, one of the alternatives must
be chosen. Often several alternative keywords are recognized; for example FREQUENCY can be replaced by
FREQUENCIES or FREQ or FREQS. In most cases the allowed alternatives are shown below.

• Keywords shown here in upper-case may be given in upper, lower or mixed case.

• Some keywords are shown in lower case. They too can be given in upper, lower or mixed case. These
keywords are never required — they can be included in the data file to improve its human readability, but
have no other purpose. They are checked for correctness but are otherwise ignored.

• Items shown in italics should be replaced by a suitable value.

• Long lines may be broken by replacing any space between items by “�+++\n”, where “�” denotes space and
“\n” denotes newline. This notation is also used occasionally in this manual to break lines that are too long
for the page.

• It is sometimes convenient to include data from other files:
#include filename
If such a line occurs anywhere in the input file, the contents of the specified file are read exactly as if they
had been pasted into the data file at this point.

• For files in the CamCASP installation directory, the following command may be used:
#include-camcasp path relative to CamCASP
This allows files to be specified relative to the CamCASP directory. For example, instead of specifying a
basis file as
#include /home/ajm/CAMCASP/basis/gamess_us/sadlej/H
you could use
#include-camcasp basis/gamess_us/sadlej/H
For this to work correctly, the CAMCASP environment variable needs to have been defined.

• The SKIP command skips execution of following lines of the input file. Normal execution resumes after an
UNSKIP or ENDSKIP command.

• The FLUSH command can be used to force flushing of the standard output buffer.

7 Cluster: Detailed specification

The cluster file is normally all that is needed to define a calculation, and in essence it is very simple, although it
provides very versatile commands for manipulating the configuration of the system to be studied. It comprises four
sections:

(i) Prologue

(ii) Molecule definitions

(iii) Geometry manipulations etc.

(iv) Job specification

We describe these sections in turn. See above for the conventions used to describe the commands.

14

7.1 Prologue

TITLE "title"
Title for the job. Optional.

GLOBAL
UNITS { DEG | DEGREE | DEGREES | RAD | RADIAN | RADIANS }
UNITS { BOHR | AU | ANG | ANGSTROM | ANGSTROMS }
[CAMCASP path]

END

The UNITS command sets default units for lengths and angles, but they can be over-ridden locally if necessary.
The CAMCASP entry specifies the full file path to the CamCASP base directory, but it will not usually be needed
— if Cluster has been compiled with a modern (Fortran 2003) compiler it will read the path from the CAMCASP
environment variable.

7.2 Molecule definitions

You can define as many molecules as you want here, and later select which of them are to be used in the actual
calculation.

MOLECULE molecule-name
[UNITS { BOHR | AU | ANG | ANGSTROM | ANGSTROMS }]
[CHARGE molecular-charge]
[I.P. ionization potential [eV]]
[AC-SHIFT \emph{asymptotic correction shift value}] [ATOM-CHARGES [AUTO | USER]]

label Z key <data> [TYPE type]
label Z key <data> [TYPE type]
...

END

The UNITS line is only needed if the units for atom positions are different from the global units. CHARGE spec-
ifies the total molecular charge, default zero. I.P. specifies the ionization potential, normally in Hartree, but it
can be given in eV if the eV unit is specified. The I.P. is needed if asymptotic correction is to be applied to the
exchange-correlation potential, which is recommended. If the I.P. is omitted and Dalton is used to perform the
DFT calculation, no asymptotic correction is applied. At present, no I.P. is needed to use the asymptotic correction
in NWChem as the CS00 scheme used by NWChem can estimate it, but the shift (I.P.+ HOMO energy) can be
supplied.

The molecular geometry follows, one line for each atom. The label is an atom identifier, up to 8 characters in length.
Z is the nuclear charge. Positions may be given in a variety of ways; see below. The site type can be optionally
specified. It is used to impose symmetry and this information is passed to other programs. Sites can be given the
same type if they are related by a molecular symmetry operation that is a proper rotation. Sites that are related only
by improper rotations have to be treated specially, but this situation is uncommon. The type name can be up to 8
characters long.

The nuclear charges Z can be skipped in the geometry specification if ATOM-CHARGES AUTO is used. In this case,
the code attempts to work out the nuclear charges from the name of the atom. Sites which are not recognised will
be assigned a zero nuclear charge.

Atom positions may be specified in any of the following ways. The default is to use Cartesian coordinates, and this
will be the most convenient if the geometry is obtained from an ab initio geometry optimization. If the geometry
is given in terms of bond lengths and bond angles the other methods may be more helpful. s1, s2 and s3 are labels
or sequence numbers of previously-defined atoms in this molecule. Negative sequence numbers can be used, and
count back from the new atom, so the most recently defined atom is −1, the previous one −2, and so on. The new
atom is notionally atom 0. If names are used to identify atoms, it is best if the names are unique, but if two or
more atoms have the same name, the one most recently defined will be assumed. Dummy sites, with Z < 0, may
be included to help define the geometry. They are discarded once the molecule definition is complete.

15

• Absolute Cartesian coordinates:
[AT] x y z

• Absolute polar coordinates:
POLAR r θ φ

• Linear Connexion:
LC s1 s2 b
Place the new atom at distance b from s1, along the extension of the line from s2 to s1.

• Planar Connexion:
PC s1 s2 s3 b θ
Place the new atom at distance b from s1, in the 1–2–3 plane, with bond angle 2–1–0 equal to θ, cis to s3 if
θ > 0, trans if θ < 0.

For the remaining position definitions it is useful to define a local coordinate system with origin at s1, z in the
direction from s1 to s2 and x in the 1–2–3 plane with s3 at positive x.

• General Connexion:
GC s1 s2 s3 b θ φ
Place the new atom at distance b from s1, with bond angle 2–1–0 equal to θ and torsion angle 3–2–1–0 equal
to φ. θ and φ can be viewed as standard spherical polar angles in the local coordinate system.

• Central Connexion
CC s1 s2 s3 b θ β
θ = 2–1–0 bond angle, |β| = 3–1–0 angle. y is positive or negative in the local frame according to the sign of
β.

• Ring Closure
RC s1 s2 s3 b b2 φ
The new atom is placed at distance b from s1 and b2 from s2, and φ is the angle between the 2–0–1 plane
and the 2–3–1 plane. φ is again the spherical polar angle in the local frame, so if φ = 180◦ the new site is in
the 2–3–1 plane, on the opposite side of the s1–s2 line from s3.

7.3 Geometry manipulations and other transformations

None of the commands in this section are required, and indeed it is common for none of them to be needed.
However they do provide powerful ways to modify the geometry of the system and other details.

For example, FIND ROTATION and FIND TRANSLATION find the rotation (axis and angle) and translation needed
to go from one molecular geometry, defined by nuclear coordinates, to another. This feature has proved very useful
in constructing dimers or small clusters that have the same relative positions as in the crystal.

JOIN, COPY, INVERT, ROTATE, and TRANSLATE operate on molecules and facilitate the assembly of clusters and
macro-molecules that can then be operated on as units.

The BOND command is very handy for “bonding” together molecules along a specific axis (defined using coordi-
nates or sites within a molecule).

The full list of available commands is as follows.

UNIQUE-SITES [list of molecule names]
The site labels need to be unique when calculating polarizabilities and dispersion coefficients. This command
modifies the site labels in the specified molecules to make them unique (within a given molecule). If no molecules
are specified, this command processes all the molecules currently defined.

{ TOL | TOLERANCE } tolerance
Specifies the tolerance used in comparing geometries. Default is 10−6, which is probably too tight for most pur-
poses.

COMPARE name of molecule 1 [and] name of molecule 2
If the data for a molecule have come from different sources (e.g. X-ray diffraction and ab initio optimization) it
is useful to be able to check that they describe the same geometry. This command sets up, for each molecule, a

16

distance matrix between the atoms, and compares the two, reporting any significant differences. The atoms must
be listed in the same order in both cases. Note that enantiomorphs will be reported as matching.

CENTRE molecule [on | at] { [SITE] label | COM | XYZ x y z }
The centre of the specified molecule is defined to be at the position given. Initially the ‘centre’ is the origin of
global coordinates.

{ WRITE | PRINT } molecule [[in] [PDB | ORIENT] [format]]
With the PDB option, this writes the molecular geometry to a PDB-format file 〈molecule-name〉.pdb. Otherwise the
atom names and positions are printed on standard output; if ORIENT is specified, they are in a form suitable for
pasting directly into an Orient data file. See also the ORIENT option of the RUN-TYPE command, below.

FIND ROTATION
[TOLERANCE tol]
FROM triad
TO triad

END
Find the rotation that would take the first triad to the position of the second. Each triad is a set of three points
specified as Cartesian coordinates, typically the coordinates of three atoms:
x1 y1 z1 x2 y2 z2 x3 y3 z3
or as site labels:
SITES s1 s2 s3 [in] { MOLECULE | MOL } molecule

The triad definition may run over more than one line if necessary. The triangles defined by the two triads must be
congruent to within the tolerance specified, default 0.001.

FIND { TRANS | TRANSLATION }
FROM position
TO position

END
Find the translation vector from the first position to the second. Each position may be given in Cartesian coordi-
nates:
XYZ x y z
or as a site label:
{ SITE site | COM } [in] { MOLECULE | MOL } molecule

FIND COM [of] molecule
Find and print out the position of the centre of mass of the specified molecule. The atom masses are assumed to be
those of the most abundant isotope.

JOIN molecule name [and | &] molecule name ... INTO new molecule name
Combine any number of specified molecules, at their current positions, into a single entity. This is useful for
creating a dimer or, more generally, an N-mer out of pre-defined molecules. Site types are preserved.

INVERT molecule
Invert the specified molecule w.r.t. to its centre. Note that the ‘centre’ is the origin of global coordinates if no centre
has been defined — see the CENTRE command above.

COPY moleculeA [to] moleculeB
Define a new molecule, initially at the same position as the original.

BOND moleculeA [[-> | TO] { moleculeB | XYZ }]
[FROM | SITES] a3 a2 a1 { -> | TO } b1 b2 b3
{ DISTANCE | LENGTH | SEPARATION } distance [ANGSTROM | ANG | BOHR]

END
This moves molecule A so that sites a2, a1, b1 and b2 are collinear and arranged in that order, and so that sites a1
and b1 are the specified distance apart. a3 is a third site lying off the a1–a2 axis, and b3 a third site lying off the
b1–b2 axis. If molecule A is non-linear, it is rotated about the a2–a1 axis so that all six sites are coplanar, with sites
a3 and b3 cis to each other. If A is linear, then a3 is irrelevant, but at present it must still be specified and must still
lie off the a1–a2 axis. It can be specified as a position in global coordinates using the syntax XYZ x y z. Molecule
B is not moved, and indeed it need not be a molecule at all. Any or all of the B sites may be specified as cartesian
positions using the syntax XYZ x y z, and if ‘molecule B’ is not specified or is specified as XYZ, then all of the sites
of ‘B’ must be specified using the syntax XYZ x y z.

17

ROTATE molecule
Rotate the specified molecule, using the rotation found by the most recent FIND ROTATION command. The rotation
axis runs through the centre of the molecule. Note that the ‘centre’ is the origin of global coordinates if no centre
has been defined — see the CENTRE command above.

ROTATE molecule BY angle [DEGREES | RADIANS] ABOUT nx ny nz

The axis of rotation need not be normalized. The rotation axis runs through the centre of the molecule.

PLACE molecule AT x y z
Position the specified molecule so that its centre is at (x, y, z) in global coordinates.

TRANSLATE molecule
Move the specified molecule by the vector translation found in a previous FIND TRANSLATION command.

TRANSLATE molecule BY distance [ANGSTROM | BOHR] ALONG x y z
The distance is assumed to be in the global units unless otherwise specified. The vector direction need not be a unit
vector, but is normalized by the program.

OVERWRITE
Overwrite existing files that have the same names as those generated by this run of the program.

OVERWRITE { OFF | FALSE | NO }
Don’t overwrite existing files, but use alternative file names if files with the same names as those generated by the
program are found to exist already. If any such file exists, the modification is applied to all files generated by this
run. This action is the default. However it is recommended to start the calculation in a clean directory to avoid any
confusion – a typical calculation will generate many files.

INTERPOLATE molecule1 [AND | &] molecule2 INTO new molecule name [FACTOR ξ]
Given two conformers molecule1 and molecule2 with sites in the same order, create a third molecule with a struc-
ture that linearly interpolates between the two. Site coordinates in the interpolated molecule are defined by:

r = r1 + ξ(r2 − r1).

7.4 Job specification

This section specifies the input files and scripts that are to be constructed for the calculation, as well as basis-set
details and some other options.

RUN-TYPE
MOLS/MOLECULE/MOL/MOLECULES <moleculeA> [[and] <moleculeB>]
FILE-PREFIX <prefix of interface files: CASE SENSITIVE>

[SAPT(DFT) | SAPT | {DELTAHF | DELTA-HF} | PROPERTIES | SUPERMOL | CAMCASP]
SCFCODE [DALTON | GAMESS | NWCHEM] [NO-SYMM]

METHOD <Electronic structure method | DFT>
FUNCTIONAL <functional | PBE0> (applicable only for DFT)
{KERNEL | KERNEL-TYPE} [ALDA | ALDA+CHF | CHF | ALDAX+CHF | ALDAX]

To use Hessians from DALTON use: ALDA+CHF-DALTON or ALDA-DALTON
{AC | ASYMPTOTIC-CORRECTION} [TH | LINEAR | GRAC] [CS00 | MULTPOLE | LB94]

BASIS <basis> [of] TYPE <type of basis> [SPHERICAL | CARTESIAN]
TYPE <type of basis>
{AUX-BASIS | AUX} <auxiliary basis> [TYPE <type of aux basis>] +++

[SPHERICAL | CARTESIAN]
[{AUX-TYPE | AUX-BASIS-TYPE} <type of auxiliary basis>]
ISA-AUX [SET1 | SET2 | SET3 | GISA | USR] +++

[MIN-S-EXP-H [=] {\em real} (default 0.0)] +++
[MIN-S-EXP-DUMMY [=] {\em real} (default=0.2)] +++
[DUMMY-SYMM-LIMIT [=] {\em char} (default = S)]

MIDBOND/MID-BOND <name of midbond basis>/NONE +++

18

[and/of] TYPE WEIGHTED/COM

! Use these to override the default MO-file names and formats
{MO-FILE-A | MO-FILE-B | MO-FILE} <name of MO file for molecule> +++

[[FORMAT] {ASCII | BINARY}]

OPTIONS [TESTS] [ISOTROPIC-POL] [NO-3RD-ORDER] [SOLVER {LU | GELSS}]
MEMORY <max memory> BYTES/KB/MB/GB <---default MB
SITE-ORDER [{OLD | DALTON2006} | {NEW | DALTON2013}]
INTEGRAL-SWITCH <Integral switch (integer)>

CAMCASP-COMMANDS
Use this block to insert User-defined commands for the CamCASP command
file. These will be used (below the MOLECULE blocks) in lieu of the
default commands. Useful if you wish to do something different. Use
with caution, preferably by *editing* a default CamCASP command file
rather than starting from scratch.

END-CAMCASP-COMMANDS

ORIENT [file | files] [for] [DISPLAY] [ENERGY] [LOCALIZATION]
PROCESS [file | files] [for] [CASIMIR] [and] [PFIT]
GAUSSIAN [file]
INTERFACE [file | files]
RANK [LOCAL <rank>] [WSM <rank>] [NONLOCAL <rank>] +++

[HYDROGEN <rank>] [DMA <rank>] [DMA-H <rank>]
SITES [file]

END

The subcommands are:

{ MOL | MOLS | MOLECULE | MOLECULES } moleculeA [[and] moleculeB]
Specify one or two molecules involved in the calculation. Either or both may be supermolecules or clusters con-
structed by joining fragments.

This command can appear any number of times. However, at present, any molecules mentioned after the first two
will be ignored.

FILE-PREFIX prefix
Prefix for all the file-names to be created for this job. Default is “molA_molB” for a calculation involving molecules
molA and molB, or “molA_basis name” for a single-molecule calculation. Note however that the prefix may be
modified, depending on the OVERWRITE setting.

{ SAPT(DFT) | DFT-SAPT | SAPT-DFT | SAPTDFT }
Perform a SAPT(DFT) calculation. Default if two molecules have been specified.

SAPT
Perform a SAPT calculation. Default kernel type is set to CHF.

{ DELTA-HF | DELTAHF }
Perform a calculation of the δHF

int correction. Default kernel type is set to CHF.

{ PROPERTIES | PROPERTY }
Perform a property calculation. Default if only one molecule has been specified.

{ SUPERMOL | SUPERMOLECULE | SUPERMOLECULAR }
Perform a supermolecule calculation.

METHOD electronic structure method
The electronic structure method to be used in the calculation. This option is needed only for a SUPERMOLECULE
calculation of the interaction energy. By default the method is set to DFT. Options are HF, MP2 and CC.

FUNCTIONAL functional
Functional to be used in the DFT calculation of molecular orbitals. PBE0 (default) or PBE is recommended, usually

19

with asymptotic correction, which is applied automatically if non-zero ionization potentials are provided in the
molecule definitions.

The type of functional is used to determine the fraction of exact exchange to be included. Consequently this is im-
portant only for hybrid functionals. At present allowed density functionals are: PBE0 PBE HCTH HCTH147 PW91.
If the functional you require is not in this list we suggest you first create the data files for one of the allowed func-
tionals using the standard command (runcamcasp.py with the -q none option to stop after the files have been
created) and then edit the CamCASP data file to set the fraction of exact exchange include the FRACTION-HFX
command in the SET GLOBAL-DATA block.

KERNEL kernel
The recommended choice, and normally the default, for the kernel is ALDA+CHF with the PBE0 functional. This
option is still memory intensive and is not recommended for large jobs. If you can tolerate a small reduction in
accuracy, then we recommend the ALDA kernel with the asymptotically corrected PBE functional.

While the kernel integrals are normally calculated within CamCASP, it is also possible to use Dalton for these
calculations, in which case more advanced kernels including gradient contructions can be used. To to calculate the
kernel integrals with Dalton use ALDA-DALTON or ALDA+CHF-DALTON.

The ALDA kernel differs from ALDAX in that it includes a contribution from the LDA correlation functional (see
sec. 9.5.1 for details). This could be the VWN or PW91c correlation functionals. Tests on numerous systems have
shown that the lack of correlation contribution to the kernel results in a loss in accuracy of about 1% to the dipole-
dipole polarizability and 1-2% to E(2)

disp,tot. Depending on the balance of energy components, the error made in the
total interaction energy could be larger than this.

See the CamCASP program specification (p. 45) for other possibilities. If you need to use these other options, you
can generate the CamCASP input file (suffix .cks) using the standard runcamcasp.py script with “-q none”,
and modify the propagator specification before running the job.

BASIS basis [TYPE { MC | MC+ | DC | DC+ }]
[SPHERICAL | CARTESIAN]

Specify the basis to use. Default Sadlej; other possibilities are aug-cc-pVxZ (or aVxZ) and cc-pVxZ (or VxZ),
x =D, T or Q.
The basis type should be specified here (the separate command BASIS-TYPE is still allowed but is not compatible
with the scripts). Default is MC (monomer-centred), meaning that the monomer basis set has basis functions only
on the atom sites of the monomer. In the MC+ case, the ‘monomer’ basis also has basis functions on the sites of the
partner molecule (so-called ‘far-bond’ functions) and may also include ‘mid-bond’ functions in the region between
the two molecules. (See the MIDBOND sub-command, below.) The DC (dimer-centred) basis has basis functions on
both molecules, and DC+ may also have mid-bond functions.

By default spherical GTOs are used in the basis set, but this can be changed using the argument CARTESIAN.

{TYPE | BASIS-TYPE} { MC | MC+ | DC | DC+ }
Specify the type of basis set to be used for a dimer calculation. We do not recommend using this command as it is
incompatible with the runcamcasp.py and related scripts.

MIDBOND { NONE | midbond [TYPE { COM | WEIGHTED }] }
Specify the mid-bond basis functions to be used, if any, and their position. Default for basis-types MC+ and DC+ is
3s2p1d; the only other possibilities are 3s2p1d1f and NONE. COM specifies that the mid-bond functions are to be
placed at the mid-point of the line joining the centres of mass. The WEIGHTED placing is more suitable for large
molecules and is the default; this calculates the position of the midbond functions as [Akin-Ojo et al., 2003]

RMB =

∑
a∈A,b∈B wab pab∑

a∈A,b∈B wab
, (1)

where pab is the midpoint of the vector rab from atom a to atom b, and wab = |rab|
−6. The inclusion of mid-bond

functions has been found to improve the description of the dispersion interaction [Williams et al., 1995].

AUX-BASIS { auxiliary basis[TYPE { MC | MC+ | DC | DC+ }] +++
[SPHERICAL | CARTESIAN]

Specify the auxiliary basis to use. This command is optional. If absent, the auxiliary basis is chosen based on the
main basis. The default is to use the RIMP2 auxiliary basis sets from the Turbomole program, which are specified
in the same way as the Dunning basis sets, that is, aug-cc-pVxZ (or aVxZ) and cc-pVxZ (or VxZ), x =D, T or Q.
The Sadlej basis has no optimized auxiliary basis associated with it, so the default here is the RIMP2 aug-cc-pVTZ

20

auxiliary basis. As a rule, the RIMP2 auxiliary basis sets should be used for the calculation of the second-order
energies.

It is also possible to specify the auxiliary basis set type as MC etc. We recommend the use of the DC or DC+ auxiliary
basis sets with MC and MC+ main basis sets, respectively. This is the default.

Other choices are Dgauss-A1-c, Dgauss-A1-x, Dgauss-A2-c, Dgauss-A2-x, and the TZVPP and SVP RI-J bases
from the Turbomole program. We have not yet tested the other basis sets, so use them with caution.

By default Cartesian GTOs are used in the auxiliary basis set, but this can be changed using the argument
SPHERICAL.

ISA-AUX [SET1 | SET2 | SET3 | GISA | USR] +++
[MIN-S-EXP-H [=] <real> (default 0.0)] +++
[MIN-S-EXP-DUMMY [=] <real> (default=0.2)] +++
[DUMMY-SYMM-LIMIT [=] <char> (default=S)]

Define the s-basis set for the iterated stockholder atoms (ISA) approach. We recommend SET1 and SET2. The GISA
basis set is taken from [Verstraelen et al., 2012]. User-defined basis sets can be supplied using the USR option. In this
case, the basis sets should be placed in $CAMCASP/basis/auxiliary/ISA/USR/. The other commands provide
some ability to control the basis sets: The minimum value of the exponents on hydrogen atoms can be set using
MIN-S-EXP-H and the minimum exponent on dummy (ghost) sites can be set using MIN-S-EXP-DUMMY. Further,
the maximum symmetry of basis functions on dummy sites can be set using DUMMY-SYMM-LIMIT.

{MO-FILE-A | MO-FILE-B | MO-FILE} <MO file name> [[FORMAT] {ASCII | BINARY}]
Normally the names of the molecular orbital (MO) files are decided by the Cluster program. These names are
based on the molecule names. This command allows the user to specify the name and format of these MO files.

MEMORY n { BYTES | KB | MB | GB }
The specified amount of memory will be used unless more is needed, in which case a warning will be printed.

OPTIONS [TEST | TESTS] [ISOTROPIC-POLS] [NO-3RD-ORDER] [DF-SOLVER {LU | GELSS}]
The OPTIONS command allows the user to set various special options.

• TESTS: Use this command to create a test job. This will typically reduce the size of the run so the job finishes
in a reasonable time.

• ISOTROPIC-POLS: This command will cause the Process input file to include the ISOTROPIC command,
thereby limiting the WSM polarizability description to include isotropic terms only.

• NO-3RD-ORDER: Suppress the calculation of 3rd-order SAPT(DFT) energy terms when running the Sapt2006
program.

• DF-SOLVER: Use this option to set the type of solver to be used to solve the density-fitting equations in
CamCASP. Options are LU and GELSS. The default in CamCASP is currently LU. Use GELSS for higher
accuracies, but bear in mind that it uses considerably more resources than LU.

SITE-ORDER [{OLD | DALTON2006} | {NEW | DALTON2013}]
Specify which ordering of the sites is to be used. This is present for backward-compatibility only.

INTEGRAL-SWITCH switch value
Specify which integral switch to use in the CamCASP code. The default is 1. This choice affects the SAPT(DFT)
energy components. The choices are:

• INTEGRAL-SWITCH = 0 : Use density-fitting for the overlap and nuclear integrals. This is a low-accuracy
option, but is needed for certain types of calculations. For example, regularization requires this option.

• INTEGRAL-SWITCH = 1 : (default) Use the non-fitted forms of the overlap and nuclear integrals. This is the
higher accuracy option.

CAMCASP-COMMANDS
commands go here

END-CAMCASP-COMMANDS
Use this to insert user-defined commands for the CamCASP input file. These will be used (below the MOLECULE

21

blocks) in lieu of the default commands. This is useful if you wish to do something different but do now want to
write the entire CamCASP input file by hand or wish to perform a batch of calculations. Use this with caution,
preferably by editing a default CamCASP command file rather than starting from scratch.

When this block is present, Cluster will create the CamCASP file using the usual preamble and the MOLECULE
specifications, after which the commands specified within this block will be appended. Consequently the last
command should be FINISH to signify the normal end of the CamCASP file.

The files in directory $CAMCASP/data/camcasp-cmnds contain such blocks. For example, the file sapt-dft con-
tains the CamCASP comands for a standard sapt-dft calculation. It refers to molecules A and B rather than using
the molecule names. These are respectively the first and second molecules specified in the MOLECULES line of the
job description section of the cluster file. It isn’t necessary to change A and B to the actual names. So instead of
specifying sapt-dft in the job description, it would be possible to specify
#include-camcasp data/camcasp-cmnds/sapt-dft
There would be little point in doing this, but a modified version could be filed in $CAMCASP/data/camcasp-cmnds
and used in this way, or filed elsewhere and used with #include, or with the alternative syntax:
CAMCASP-COMMANDS [FILE] \emph{name}
If the FILE keyword is present, the name should be the full pathname of the file containing the commands. If it
is omitted, the name should be the name of one of the files in the $CAMCASP/data/camcasp-cmnds directory. In
either case, the END-CAMCASP-COMMANDS line is not needed.

ORIENT [file] [for] [DISPLAY] [ENERGY] [LOCALIZATION]
File suffix: .ornt
Construct an input file for a later Orient calculation to localize polarizabilities. This may need a bit of editing –
see §8.2 for details. ‘[file]’ is not the name of the file — it’s redundant syntax, but can be included to clarify
the function of the data line for the human reader. The file name is constructed automatically using the specified
file-prefix, possibly modified, and a standard suffix, ‘.ornt’ in this case.

If two or more molecules have been listed using the MOLECULE command, the Orient command file for the dimer
consisting of the first two molecules will be constructed. If only one molecule has been specified, this command
will write out the Orient command file containing commands for localizing its polarizabilities.

Normally all you need is the ORIENT command and the types of files created is determined as described above. This
behaviour can be overriden using the DISPLAY ENERGY LOCALIZATION options which, if present, will generate
the appropriate files.

The energy file is generated with a number of comments and options. It will require editing and for this you may
need to consult the Orient manual.

PROCESS [[file | files] [for] [CASIMIR] [and] [PFIT]]
File suffix: .prss and _casimir.prss
Construct input files for the Process program for use in a later Pfit calculation to refine the localized polarizabilities
and/or to create the Casimir input file for a later dispersion coefficient calculation. If no arguments are present, both
files are created. The Process input file with commands to create the Casimir input file are put in a file ending with
_casimir.prss.

The Process input file with commands for a later Pfit calculation is written for the first in the list of molecules, but
the commands for a later Casimir calculation can use one or two molecules. If only one molecule is present in the
list, the Process input file is written out for a calculation of the dispersion coefficients between pairs of the same
molecule. If two or more molecules are present, the same is done for the first two molecules in the list.

These files may need a bit of editing – see §8.2 for details.

GAUSSIAN [file]
File suffix: .com
Construct the input file for a Gaussian calculation. The Gaussian file is written for the first molecule in the list.

INTERFACE [file | files]
This command writes out the CamCASP command file (‘.cks’ suffix), the *.template file, and, if needed, the
_P.data file for a SAPT calculation.

If only one molecule has been specified using the MOLECULE command, only the CamCASP command file and
*.template file are created, as it is assumed the interface files for a properties calculation are needed.

22

If two or more molecules have been specified, it is assumed that this is an interaction energy calculation using
SAPT(DFT) and all three command files are created.

RANK [NONLOCAL lNL] [LOCAL lL] [WSM lWSM] [HYDROGEN lH]
[DMA lDMA] [DMA-H lDMA−H]

By default, the files produced by this module assume a polarizability and multipole moment description with
rank 1 terms on the hydrogens and rank 4 terms on all other atoms. This can be changed using this command.
There are many stages in the calculation of localized polarizabilities and the rank can be set for each of these,
but as each stage uses the results of the previous one the rank cannot increase between stages. Also, at present,
polarizabilities and multipole moments are limited to rank 4 (hexadecapole). Consequently we need to ensure that
4 ≥ lNL ≥ lL ≥ lWSM ≥ lH and 4 ≥ lDMA ≥ lDMA−H. Cluster will stop with an error message if these requirements
are not satisfied.

SITES [file | files]
File suffix: .sites
This command writes out the molecular geometry for each molecule in the list. The geometry is written in the file
prefix.sites, or in files prefix_nnn.sites if more than one molecule has been listed. The format is that used by
the Pfit program.

7.5 Energy

This module to some extent duplicates a small part of the functionality of Orient. There are a few reasons for this:
(1) to read/write/alter a potential defined in Orient format, and (2) to calculate dispersion energies of clusters of
molecules and crystals (see §7.6) using isotropic dispersion models (in this case, the anisotropy will be ignored),
and hence (3) to aid the development of dispersion models to be paired with density functionals.

ENERGY
...see commands below...

END

The commands that can be used in the ENERGY block are:

POTENTIAL
UNITS [BOHR | ANGSTROM | NM | HARTREE | KJ/MOL | KCAL/MOL | CM-1 | EV | K]
SCALE-C6 <scaling for C6>
SKIP-SITES <list of sites to be skipped>
NAME <name>
[MOLECULE-PAIR <MolName1> <MolName2>]
[ISOTROPIC-ONLY]
<atom name 1> <atom name 2> [rho] [alpha] [C6] [C7] [C8] [C9] [C10] [C11] [C12]

00 00 0 [<rho value> <alpha value> <C6 value> <...>]
10 00 1 [<rho value> <alpha value> <C6 value> <...>]
...

END
END
The potential is defined and modified using this block. UNITS specifies the units used for the potential parameters.
SCALE-C6 scales the C6 parameters by the specified factor. This is useful when effective C6 models are needed.
SKIP-SITES allows a set of sites to be removed from the potential decsription. NAME defines the name of the
potential. And MOLECULE-PAIR is used to define the pair of molecules associated with the potential.

What follows this preamble is the actual potential definition. The format used is identical to that used by Orient,
so please consult the Orient manual for details of the specification. Briefly, parameters for each atom pair are
specified with a header line:
<atom name 1> <atom name 2> [rho] [alpha] [C6] [C7] [C8] [C9] [C10] [C11] [C12]
that starts with the atom pair labels and is followed by names of all parameters included. The order doesn’t matter
as long as it is consistent with the order of the parameter values that appear on the following lines. The parameters
are specified along with their angular momenta as follows:

laka lbkb j [<rho value> <alpha value> <C6 value> <...>]
The pair-block is terminated with END. As many pairs can be specified as needed.

23

If an atom pair appears more than once the parameters in subsequent specifications are used to augment or override
the prior sets. This is useful when the short range parameters are specified in one potential file but the long-range
(dispersion) parameters are in another. Both files can be read in and concatenated into a single potential. Also, as
input units can be altered using UNITS, unit conversions are possible.

If ISOTROPIC-ONLY is specified, all anisotropy parameters will be ignored.

WRITE-POTENTIAL
[SKIP-DUPLICATES | NO-SKIP-DUPLICATES]

END
Writes out the potential in the Orient format. The SKIP-DUPLICATES command can be used to prevent equivalent
pairs from being written. Note that the pair H1 N is equivalent to N H1. This command would write only one of
these.

Taken together with the commands in the POTENTIAL block, these provide a convenient way to manipulate the
potential file: discard sites, alter units, merge potentials, etc.

ANALYSE
TABLE [ANISO [10 | 20]]

END
Perform an analysis of the potential model. Please see the source code to figure out what kind of analysis has been
programmed.

{C6 | C6-MODEL | CN-MODEL | DISP-MODEL | DISPERSION-MODEL }
DAMPING

GRIMME
FUNCTIONAL [REVPBE | PBE | BLYP | B-P86 | TPSS | B3LYP | B97-D]
DAMPING [04 | 06] [d [=] <value>]
S6 [=] <value>
POWER [=] <power>
RADIUS-SCALING [=] <value>

END
TANG-TOENNIES [BETA [=] <beta>]
GRIMME+T-T

END
{GRIMME06 | USER-DEF}
SCALE-C6 [=] <multiplier>
TYPES

UNITS [BOHR | ANGSTROM] [HARTREE | KJ/MOL | CM-1 | EV | KELVIN | KCAL/MOL]
[NAME [RADIUS] [C6] [C7]...] <---Strings
<TYPE> [<radius>] [C6] [C7]... <---Values

END
DEBUG
[QUIET | VERBOSE]

END
Use this block to define the dispersion model used for a dispersion energy calculation. There are two main sub-
blocks:

• The potential block
If a potential has already been defined using the POTENTIAL block then this potential could be used by spec-
ifying USER-DEF. Else, the 2006 isotropic C6 model defined by Grimme [Grimme, 2006] can be used with
the GRIMME06 command. These two commands are mutually exclusive. Grimme specifies atomic properties
from which the pair potential parameters are developed, typically using combination rules. These atomic
properties can be altered using the TYPES block. The units used in this block is specified using the UNITS
command. Next appears a header that starts with the string NAME and is followed by the list of parameter
labels as the appear in subsequent lines. You can use the TYPES block to alter atomic parameters from the
Grimme 2006 values.

• DAMPING
The following damping models can be used:

24

◦ GRIMME: Either the 2004 or 2006 models. These take the form:

f G(r) = s6

 1
1 + exp−d(r

r0
− 1)

α (2)

The two models differ in the choice of the d parameter which can be set using DAMPING [04 | 06]
to get the 2004/06 values, or it can be set explicitly using ... d [=] <value>. The s6 parameter is
determined using the functional. Or it can be specified using S6 [=] <value>. The power α is 1 in the
Grimme models. You can alter it using POWER [=] <power>. Finally, the atomic radii that are used to
determine r0 can be scaled using RADIUS-SCALING [=] <value>.

◦ TANG-TOENNIES [BETA [=] <beta>]: The Tang–Toennies [Tang and Toennies, 1992] can be used
with a specified damping parameter β. These functions take the form:

fn(βRab) = 1 − exp(−βRab)
n∑

k=0

(βRab)k

k!
(3)

◦ GRIMME+T-T specifies that both damping functions are used.

DISPERSION
Calculate the dispersion energy between all molecules defined in the Cluster input file using the energy model
defined.

NO-INTRA
Do not calculate the intra-molecular energy. In many dispersion models no distinction is made between the inter-
and intra-molecular contributions. This command causes the intermolecular energy only to be calculated.

7.6 Crystal

Once an interaction energy model has been defined, the dispersion energy of a molecular crystal can be calculated
using this module.

CRYSTAL
...see commands below...

END

Allows calculations of the dispersion energy in crystals using the following commands:

{CRYSTAL | CRYSTAL-CELL | CRYSTALCELL | CELL}
UNITS <units for length, energy, angles, pressure in the RES file>
RES-FILE <file name> [READ-TITLE-LINE] [{FIXED | VARIABLE} CELL]
CELL-FILE <file name>
RADIUS [=] <radius> [Bohr | Angstrom]
SHELL-TYPE [CUBIC]
DEBUG
[QUIET | VERBOSE]

END
Define the crystal cell using either a ShelX RES file or a CELL file. These formats are not defined here. Please see
the Castep manual for details. One caveat: Cluster does not know about molecular point groups. Consequently,
the crystal must be specified in P1 symmetry, that is, you must specify all ions in the unit cell, and not just ions in
the asymmetric unit. Normally, Castep will write out a CELL/RES file with P1 symmetry, so you should be able
to use these files here.

The dispersion energy of the crystal is calculated using real-space summations by including shells to a specified
radius. The radius is set using RADIUS and has a default value of 15 Å. At present, only one algorithm for con-
structing shells has been provided so SHELL-TYPE must be CUBIC, which is the default. Here, the first shell is just
the unit cell. The second contains all cells with a face in contact with the first shell, and so on. Pictorially, the
construction looks like this in 2-D:

2

25

2 1 2
2 1 0 1 2
2 1 2
2

DISPERSION MIN-SEP [=] <minimum site-site separation>
EPSILON [=] <epsilon value for finite difference>
[QUIET | VERBOSE]

END This calculates the dispersion energy for the crystal. The command MIN-SEP allows control of the minimum
distance between sites. Dispersion energies will not be evaluated for sites with smaller separations. The default
value is 2 Å.

The code also estimates the van der Waals pressure on the cell using the method of finite differences:

PvdW =
dEdisp

dV
≈

Edisp(V2) − Edisp(V1)
V2 − V1

, (4)

where, if V0 is the cell volume, V1 = (1 − ε)V0 and V2 = (1 + ε)V0. This equation scales all coordinates in the cell
to calculate the pressure. The value of ε can be set using EPSILON. The default is 10−3.

7.7 ORIENT

Cluster provides functions to use the output from an Orient BASIN-HOPPING search. Orient will write out the
stable structures in a *.geom file in the format:

Minimum 1, energy = -14.149952 kJ/mol
Moments of inertia: 1063.1800 2635.1297 2762.3835 amu bohr^2
pyridine1 at 0.128741 0.029517 1.422383 rotated by 36.672 deg

about -0.209496 0.602668 -0.770002
pyridine2 at -0.128471 -0.029088 8.577618 rotated by 70.480 deg

about -0.005891 0.354489 0.935042
Minimum 2, energy = -15.520807 kJ/mol
Moments of inertia: 664.76089 4988.6802 5176.5432 amu bohr^2
pyridine1 at 0.046180 -0.253926 -5.155193 rotated by 113.477 deg

about 0.937866 0.028060 0.345861
pyridine2 at -0.046161 0.253801 5.154207 rotated by 79.420 deg

about 0.456964 -0.717933 -0.525125
...
...

This module can select particular minima from this file and create dimer geometry files in the standard format
(with one molecule fixed in a reference position and the other rotated. Such a file can subsequently be used in all
the CamCASP and Orient calculations possible with scripts included in this CamCASP distribution.

The syntax is as follows:

ORIENT
UNITS ...
[QUIET | VERBOSE]
MAXCFGS = <maximum number of configurations| par_maxcfgs>
CONFIG-FILE <name> [SKIP-MOMENTS] [MAXCFGS = <maximum num of configs>] +++

[OFFSET <value>] [APPEND] [NAME <name>]
REORIENT [[molecule] <molecule name>]
R-SCALINGS <scalings to be applied to R vectors for

molecules in configurations>
WRITE [FORMAT [ORIENT [[&] GEOM]]] [ALL | CONFIG <index>] [LABELS]
SORT
ANALYSE
[CFG-LIST-INDEX <index>]

26

DETAILS
SORT
SIMILARITY [ENERGY] [MOMENTS]
ENERGY-SIGMA <sigma> [<units>]
MOMENT-SIGMA <sigma> [<units>]
SIMILARITY-CUTOFF <value in [0,1]>

END

! Subsequent calls to ANALYSE can be of the form:
ANALYSE CFG-LIST-INDEX <index>

CORRELATE
{ALL | LIST list of config-list indices}
DETAILS
SIMILARITY [ENERGY] [MOMENTS]
ENERGY-VAR <variance> [UNITS <units>]
MOMENT-VAR <variance> [UNITS <units>]
SIMILARITY-CUTOFF <value in [0,1]>

END
TABULATE {ALL | LIST list of config-list indices}

END

UNITS ...
This is the standard units specification with will typically specify length and angle units.

MAXCFGS = <maximum number of configurations| par_maxcfgs>
Specify the maximum number of configurations. This should be larger than the number of minima included in the
*.geom file. You should not have to specify this as it takes on a sensible default set in parameter par_maxcfgs.

CONFIG-FILE <name> [SKIP-MOMENTS] [MAXCFGS = <maximum num of configs>] +++
[OFFSET <value>] [APPEND] [NAME <name>]

Specify the name of the Orient*.geom file here. The option SKIP-MOMENTS will suppress reading the moments
of inertia. And the maximum number of configurations cab be set here too using MAXCFGS. This command can be
used as often to read configurations from multiple structure searches. By default each set of configurations will be
placed in a new list. The APPEND command causes configurations to be added to the previous list. In this case, to
avoid a conflict of the indices of the minima, use the OFFSET command to offset the indices of the minima by the
specified value. Optionally, the configuration list can be given a name using NAME.

REORIENT [[molecule] <molecule name>]
As shown in the example above, the *.geom file will usually have both molecules rotated and translated. This is
a problem as the convention for all scripts included in CamCASP is to have one molecule fixed in its reference
orientation and the other translated and rotated. The REORIENT command re-orients the dimer to have the specified
molecule re-oriented back into its reference orientation.

R-SCALINGS <values>
Having obtained the re-oriented dimer, generate a set of configurations by scaling the translation vector by the
specified values. An example set is
R-SCALINGS 0.80 0.85 0.90 0.95 1.00 1.05 1.10 etc..

WRITE [FORMAT [ORIENT [[&] GEOM]]] [ALL | CONFIG <index>] [LABELS]
Write out the geometries in a suitable format. FORMAT ORIENT writes out all geometries in the format used in
*.geom. For the example quoted above with pyridine1 re-oriented, this would result in:

UNITS BOHR DEGREES HARTREE
Minimum 1, energy = -0.005389 HARTREE
Moments of inertia: 1063.180000 2635.129700 2762.383500 AMU BOHR^2

pyridine1 at 0.000000 0.000000 0.000000 rotated by
0.000000 DEGREES about 1.000000 0.000000 0.000000

pyridine2 at -2.527069 -1.715543 6.475941 rotated by
93.750732 DEGREES about -0.138703 0.004010 0.990326

Minimum 2, energy = -0.005912 HARTREE

27

Moments of inertia: 664.760890 4988.680200 5176.543200 AMU BOHR^2
pyridine1 at 0.000000 0.000000 0.000000 rotated by

0.000000 DEGREES about 1.000000 0.000000 0.000000
pyridine2 at 4.513912 8.832546 -2.856706 rotated by

114.211262 DEGREES about -0.676391 -0.735007 -0.047549
...
...

The FORMAT GEOM for minimum 1 and the above R-SCALINGS results in the following:

Reorient pyridine1
R-scalings 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.40
Write Format ORIENT & GEOM Config 1

! CGF = 1
! UNITS BOHR DEGREES HARTREE

1 -2.02165515 -1.37243434 5.18075303 93.75073208 -0.13870331 0.00401048 0.99032586
2 -2.14800859 -1.45821149 5.50455009 93.75073208 -0.13870331 0.00401048 0.99032586
3 -2.27436204 -1.54398863 5.82834716 93.75073208 -0.13870331 0.00401048 0.99032586

...

...

Here we have selected the first configuration using the CONFIG <index> option. By default the geometries are
written out with integer indices; the command LABELS optionally used the scaling factors to label the geometries.

SORT
Sort the list of structures based on their energies.

ANALYSE
[CFG-LIST-INDEX <index>]
SORT
SIMILARITY [ENERGY] [MOMENTS]
ENERGY-VAR <variance> [<units>]
MOMENT-VAR <variance> [<units>]
SIMILARITY-CUTOFF <value: [0,1]>
DETAILS

END

! Or the shorter form that uses the setting from
! the previous call to ANALYSE:

ANALYSE CFG-LIST-INDEX <index>

Analysing more than a few structures by hand can be tedious and is prone to error. This module provides a set of
tools to make structure analysis easier.

By default, the analysis is done on the last list of configurations read using CONFIG-FILE. A specific configuration
list can be selected using CFG-LIST-INDEX. Structures can be sorted based on energies using SORT. SIMILARITY
tests can be performed based on the ENERGY and/or MOMENTS of intertia. As a rule of thumb, use the ENERGY crite-
rion only if all structures have been obtained from the same potential energy surface. Rather than implement hard
cutoffs to judge similarity Gaussian similarity probabilities are assigned based on supplied variances. Variances can
be set using the ENERGY-VAR and MOMENT-VAR commands in specifed units or current units. The only hard cutoff

used is the SIMILARITY-CUTOFF which should be between 0 and 1. Strcutures with similarity probabilities greater
than this will be deemed similar. Normally, this sub-module will perform the analysis and write out a truncated
GEOM file that consits of unique structures only. If details of the analysis are desired use the DETAILS option. Of
use is the similarity probability matrix printed out.

Once analysis parameters have been set using the above block, the analysis of other configuration lists can be
performed using the same settings with the following command:
ANALYSE CFG-LIST-INDEX <index>

28

CORRELATE
{ALL | LIST list of config-list indices}
DETAILS
SIMILARITY [ENERGY] [MOMENTS]
ENERGY-VAR <variance> [UNITS <units>]
MOMENT-VAR <variance> [UNITS <units>]
SIMILARITY-CUTOFF <value in [0,1]>

END

Once a set of configurations lists has been analysed, we may want to establish correlations between the structures
in the lists. This is very tedious to do by hand and is likely to be error-prone. The CORRELATE module can be used
to establish correlations. Configuration lists can be selected using ALL for all lists, or LIST with a selection of list
indices. The other commands are analogous with the ANALYSE module. As a rule, the comparison tolerances need
to be loosened when attempting to make comparisons between structures found on different energy surfaces.

The results of the correlation will be printed out as a table of configuration indices and energies. Configura-
tions in a row are deemed to be similar within the tolerances set. This table can be visualised using the script
utilities/plot-levels.py.

TABULATE {ALL | LIST list of config-list indices}

Creates a table of configurations in either ALL or specific LISTs.

7.8 Finally, . . .

FINISH
End of data.

8 Examples

8.1 A SAPT(DFT) calculation

! Cluster file for H3N...HF

! These are the global units. Can be overridden locally in some modules.
Global data

Units bohr deg
Camcasp-path /usr/local/camcasp-5.7 ! Full path to the CAMCASP installation

! (not usually needed)
End

Molecule H3N
Units bohr
I.P. 0.3701
! Geometry from Herzberg
N 7.0 0.0000000000 0.0000000000 0.0000000000
H1 1.0 1.79359084 0.0000000000 -0.69190123
H2 1.0 -0.89679542 1.5532952280 -0.69190123
H3 1.0 -0.89679542 -1.5532952280 -0.69190123

END

Molecule HF
Units angstrom
I.P. 0.5891
! Geometry from Herzberg
F 9.0 0.00000000 0.00000000 0.00000000
H 1.0 0.00000000 0.00000000 0.9171

29

END

! As defined, the F of HF coincides with the N of NH3, and the H
! of HF points away from N. Rotate the HF (of course we could
! have placed the H on the -z axis in the first place):
Rotate HF by 180 about 1.0 0.0 0.0
! Now move the HF so that the N...F distance is 6 bohr:
Translate HF by 6.0 bohr along 0.0 0.0 1.0

! Specify the calculation
Run-Type

SAPT(DFT)
Molecules H3N and HF
File-prefix H3N_HF
!
Basis Sadlej Type MC
Aux-Basis aTZ Type DC
!
SCFcode DALTON ! These are all defaults.
Functional PBE0
Kernel ALDAX+CHF
!
Interface files ! Needed to generate the Camcasp, *.template and

! *_P.data files.
End

Finish

This file creates an H3N...HF cluster. The monomer basis set will be used. The auxiliary basis is usually set by
default, but here we have defined it explicitly. Note that even though the main basis is type MC, the auxiliary basis
is set to type DC. This is the default and results in far higher accuracies than the MC basis type.

The command File-prefix allows you to specify your own file prefix. The default is to use the concatenation of
the molecule names, which can be ugly if they’re spelt out.

We are going to run a standard SAPT(DFT) calculation, which requires a Dalton calculation to obtain wave-
functions for each monomer, with and without ghost functions on the other monomer, followed by a CamCASP
calculation to obtain the induction and dispersion energies using coupled Kohn–Sham perturbation theory. All of
this can be done using a single high-level script:
runcamcasp.py H3N_HF -q small
where H3N_HF is the job-name, and is the same as the file prefix specified in the Cluster input file.

8.2 An example properties calculation

We start with the simple input file for Cluster. For formamide it would look like Fig. 2 on the next page. Let’s call
it HCONH2.clt. The ‘!’ character starts a comment, which continues to the end of the line. Notice that the atoms
must all have different names — the properties will be different for the different H atoms, for example, and we
need to be able to tell which is which.

Now the runcamcasp.py script will set up and run the main calculation; for example
runcamcasp.py HCONH2 -q small

This would be a properties calculation even without the Properties line, because we have only specified one
molecule. The -q flag specifies how the job is to be run, as for a SAPT(DFT) calculation; see p.13. By default,
this script uses a Cluster input file with the name JOB.clt, i.e. HCONH2.clt. If this is not the case, use the
“--clt cluster file” option to specify the name of the Cluster file.

The initial steps in the calculation are the same as for a dimer energy calculation, but the files created are different:

• Create a new directory for the job, as above.

• Run the cluster program to generate the necessary files. If NWChem were to be used, cluster would
generate the input file directly. In the case of Dalton, cluster generates a template file that is used to

30

TITLE Formamide geometry file

Global data
UNITS Bohr Degree ! These are the defaults
Camcasp /usr/local/camcasp-5.7 ! This is the full path to the \Camcasp installation

! (probably unnecessary)
End

! Define the molecular geometry
Molecule formamide

I.P. 0.3745
Charge 0
C 6.0 0.0000000000 0.0000000000 0.0000000000
O 8.0 2.2906315140 0.0000000000 0.0000000000
H1 1.0 -1.1390824747 1.7724683628 0.0000000000
N 7.0 -1.4598529795 -2.1020505657 0.0000000000
H2 1.0 -3.3620904774 -1.9841855358 0.0000000000
H3 1.0 -0.6271017798 -3.8218918498 0.0000000000

End

! Now specify the calculation to be done
Run-Type

Properties
Molecule formamide
file-prefix HCONH2 ! This will identify files for this job
Basis Sadlej ! The default is type MC.
SCFcode DALTON
Func PBE0 ! Specify the functional to use. See below.
Kernel ALDAX+CHF ! Specify the kernel for the coupled Kohn-Sham

! perturbation propagator. See below.
Orient file ! These lines produce input files for
Process file ! later stages of the calculation
Interface file ! Needed to create the CamCASP and *.template files
Sites file ! Creates the HCONH2.sites file containing the

! molecular geometry.
End

Print formamide in Orient format ! This just prints the geometry

Finish

Figure 2: Cluster file for formamide

construct the Dalton .dal and .mol files. This step uses the ionization potential for formamide.

• Once the files are set up, the job submission proceeds as for a SAPT(DFT) job. The submitted job runs
Dalton and then the CamCASP program to calculate the properties specified in the JOB.cks file.

A note on the choice of functional: PBE0 is normally recommended, and is the default, but it is possible to use
any functional provided by Dalton. Also the propagator kernel is ALDA+CHF by default, but ALDAX+CHF may be
specified for a faster calculation with a small loss in accuracy.

Now you’ve got your moments, distributed polarizabilities at 11 frequencies (static and 10 imaginary, all in a single
.pol file) and point-to-point polarizability responses on a grid of 2000 points at 11 frequencies (all in a single p2p
file).

Next we’d like to localize the polarizabilities and refine them, and perhaps calculate dispersion coefficients.

8.2.1 Localization

Localization is carried out by changing to the directory for the job, and executing the simple command
localize.py JOB options

This carries out the following steps:

31

• Find the .pol file containing the calculated polarizabilities, and the .p2p file containing the point-to-point
responses. They will usually be in the OUT subdirectory. If for some reason there is more than one possible
file, you will be asked to choose the right one.

• The .pol file is split into separate files for each frequency.

• The polarizabilities at each frequency are localized, using the Orient program. Normally localized polariz-
abilities are calculated only up to rank 2, but this can be changed using the --limit option. The localization
can be carried out using either the Le Sueur–Stone procedure [Le Sueur and Stone, 1994] or the Lillestolen–
Wheatley procedure [Lillestolen and Wheatley, 2007]. The latter is recommended and is the default.

• Unless the --norefine option has been specified, the local polarizabilities are refined by fitting to the
point-to-point responses. This is done separately at each frequency.

• Unless the --nodisp option has been specified, the refined polarizabilities are used to evaluate site–site
dispersion coefficients.

Further options for the localize.py command can be listed by invoking the command with the single argument
‘--help’. It is also possible to modify the behaviour of the command by editing the data files that were created
automatically by the runcamcasp.py command, or by providing additional ones, as explained below. The full list
of options is as follows:

--sites file The molecular sites are defined in the specified file. Default file is JOB.sites, and this is constructed
for you if specified in the .clt file. It can be modified if necessary, in particular to add a definition of site
types at the beginning and to specify the type of each site if not done already.

--axes file The local axes are defined in the specified file. The default file is JOB.axes. If the specified file isn’t
found in the current directory, it is searched for in the directory above (the one in which you issued the
original runcamcasp.py command). If one of these exists but is empty, or if neither exists, global axes are
used. If there is symmetry, it is important to define local axes that correspond to the symmetry, and to ensure
that symmetry-related sites are of the same type (and that symmetry-unrelated sites are of different types).
For more about this, see §8.3 on p. 35.

--limit n Generate localized polarizabilities up to rank n. Default 2. Higher ranks may be specified, but 2 is
usually enough.

--wsmlimit nw Limit the rank of refined polarizabilities to nw. nw < n. Default nw = n.

--hlimit nh Limit the rank of refined polarizabilities on hydrogen atoms to nh. nh ≤ nw, default nh = nw. For
most purposes it is sufficient to set nh = 1.

--weight w Use weighting scheme w for refining the polarizabilities. See p. 73 for details. Default is scheme 4.

--isotropic When refining, fit only isotropic polarizabilities. The default is to fit anisotropic terms as well.

--norefine Skip the refinement step and the calculation of dispersion coefficients.

--nodisp Skip the calculation of dispersion coefficients.

--keep Don’t delete the intermediate files generated by the script. Shouldn’t be necessary unless bugs occur.

--loc { LW | LS } Use the specified localization procedure — LW (Lillestolen–Wheatley) or LS (Le Sueur–
Stone). LW is recommmended and is the default.

8.2.2 Further details

The data files used by the localization process are mostly constructed by Cluster at the start of the runprops
procedure. If necessary they can be modified before carrying out the localization.

Orient is used to obtain the local polarizabilities. Fig. 3 shows part of the HCONH2.ornt input file, as constructed
by Cluster. In this data file, constructs like <INDEX!000> are replaced by appropriate values during the execution
of the localize.py script.

32

Molecule formamide at 0.0 0.0 0.0
! Units BOHR
C 0.00000000 0.00000000 0.00000000 Type C
O 2.29063151 0.00000000 0.00000000 Type O
H1 -1.13908247 1.77246836 0.00000000 Type H1
N -1.45985298 -2.10205057 0.00000000 Type N
H2 -3.36209048 -1.98418554 0.00000000 Type H2
H3 -0.62710178 -3.82189185 0.00000000 Type H3

End

Polarizabilities for formamide
Read rank 4 sites +++

C O H1 N H2 H3
#include HCONH2_NL4_<INDEX!000>.pol
Limit rank <LIMIT! 2> for +++

C O H1 N H2 H3
Sum-rule test 1e-7
Localize <LOC!LW> test 1e-7 Limit <LIMIT! 2> sites +++

C O H1 N H2 H3
End

Edit formamide
#include <AXES!axes>

End

Figure 3: Part of the Orient file for formamide

If necessary, the file can be edited before carrying out the localization. Another possibility is to include another
EDIT section immediately after the molecule definition to define the bonds explicitly. The bonding is used by the
LW procedure, and normally the bonds are assigned automatically by reference to standard atom radii. It might be
necessary to define the bonds explicitly if the automatic procedure doesn’t work, for example if one of the ‘bonds’
is unusually long. See the Orient manual for how to do this.

It is possible, as mentioned above, to provide a file defining local axes for each atom. By default, the file is called
JOB.axes, and it is automatically used if provided, either in the job directory or the directory above. In the present
example we might choose local axes for each H atom, with x along the bond and z perpendicular to the molecular
plane. Instructions for specifying this are in the Orient manual. It is not necessary in this case, and if no local-axis
file is provided, an empty file is supplied. Local axes become important when there is molecular symmetry, and an
example is discussed in §8.3.

8.2.3 Refining the local polarizabilities

We have found that the localization procedure used by Orient results in local polarizabilities that are not quite
optimum. They can be refined by using the Pfit program to reproduce the point-to-point polarizabilities. The
localization script does this automatically, unless the --norefine flag is specified. The necessary input files for
Pfit are generated automatically by Process from the HCONH2.prss input file, shown in Fig. 4. Constructions like
<LIMIT! 2> are replaced by default values or by values specified on the command line.

Pfit has other important uses. The standard procedure does not impose full symmetry, though it does require sites
of the same type to have the same polarizabilities. The grid of points used for the point-to-point polarizabilities
does not have any symmetry, so fitting to the values may result in polarizabilities that should be zero having small
non-zero values. This can provide a guide to the accuracy of the fitted values, but usually it is better to obtain values
that have the correct symmetry. Also the standard procedure fits all possible polarizability components up to the
specified maximum rank, but a simpler model may be needed. These needs can be met by editing the polarizability
definition file, JOB.pdef. This file is generated automatically if it doesn’t already exist, either in the job directory
or the one above, so the usual procedure is to carry out the localization and refinement, and check the JOB.pdef
to make sure that the polarizability model is correct and suitable. If it needs to be changed, just run the localization
command again with the revised file in place.

The JOB.pdef file as automatically generated includes all polarizability components up to the limits specified in
the localize.py command, and the polarizabilities for sites of the same type are assumed to be identical. This

33

TITLE PROCESS file for formamide
! Usage: process < HCONH2.prss

Set Global-data
Units BOHR DEGREE
Overwrite
Echo Off

End

Molecule formamide
Units BOHR
C 6.00 0.00000000 0.00000000 0.00000000 Type C
O 8.00 2.29063151 0.00000000 0.00000000 Type O
H1 1.00 -1.13908247 1.77246836 0.00000000 Type H1
N 7.00 -1.45985298 -2.10205057 0.00000000 Type N
H2 1.00 -3.36209048 -1.98418554 0.00000000 Type H2
H3 1.00 -0.62710178 -3.82189185 0.00000000 Type H3

End

Read local pols for formamide
Use binary file HCONH2_L<LIMIT!2>_0f10.pol
Maximum rank <LIMIT! 2>
Limit rank to <WSMLIMIT! 2>
Limit rank to <HLIMIT! 1> for sites +++

H1 H2 H3
Frequencies STATIC + 10
! Use this command to split the P-2-P pol file into 11 parts:
! P2P-Pols <point-2-point pol file> SPLIT

End

Write
File-prefix HCONH2
PFIT file for formamide +++

with cutoff 0.0001 and freq <INDEX!0> +++
with penalties and weight <WEIGHT! 4> +++
and <ISOTROPIC!> polarizabilities

End

Finish

Figure 4: The HCONH2.prss input file

means that sites should not be assigned the same type unless they are related by symmetry, or they are to be treated
as equivalent. Also the axes for the symmetry-related sites must be related by proper symmetry operations (pure
rotations), as sites related only by improper operations may have unavoidable sign differences between some of
the components.

Also some components may be zero as a consequence of the local site symmetry. Such components should be
deleted from the JOB.pdef file. If left, they will usually be fitted with values close to zero, but not exactly zero
because the data grid used for the localization is not symmetric. Also including components that must be zero adds
unnecessarily to the complexity of the model and may lead to numerical problems.

The Orient program can be used to map the induction energy aris-
ing from the response of the local or non-local polarizabilities to a
point charge on the molecular surface. The example shows it for the
non-local polarizabilities of formamide, up to rank 4, on the vdW×2
surface. The energy zero is at the top of the grey section of the energy
scale. Such maps can be generated for a variety of polarizability mod-
els, which might be obtained for example by simplifying the model
defined by the JOB.pdef file, and they give a clear guide to the qual-
ity of the polarizability description [Misquitta et al., 2008a].

34

Global
Units Bohr degrees
Overwrite yes

End

Molecule XIII
I.P. 0.3342
Units Bohr
C1 6.0 0.00000 0.74117 0.00000 Type C1
C2 6.0 2.27488 -0.62887 0.00000 Type C2
C3 6.0 2.29640 -3.26453 0.00000 Type C3
C4 6.0 0.00000 -4.52851 0.00000 Type C4
C5 6.0 -2.29640 -3.26453 0.00000 Type C3
C6 6.0 -2.27488 -0.62887 0.00000 Type C2
Cl 17.0 0.00000 3.99305 0.00000 Type Cl
Br2 35.0 5.43284 1.05478 0.00000 Type Br
H3 1.0 4.05277 -4.30400 0.00000 Type H
F 9.0 0.00000 -7.08125 0.00000 Type F
H5 1.0 -4.05277 -4.30400 0.00000 Type H
Br6 35.0 -5.43284 1.05478 0.00000 Type Br

End

Run-Type
Properties
Molecule XIII
Basis Sadlej
File-prefix XIII
Orient file
Process file
Sites file
Interface files

End

Finish

Figure 5: The XIII.clt cluster file

8.3 Dispersion coefficients

Distributed (i.e. atom–atom) dispersion coefficients will be calculated by the localize.py procedure unless the
�nodisp option (or the �norefine option) is specified. Coefficients from C6 up to C10 or C12 can be calculated,
but note that some contributions to the higher coefficients may be absent. For example, C8 coefficients should
include contributions from dipole–octopole polarizabilities, but these will be absent if only polarizabilities up to
quadrupole–quadrupole are provided.

Let’s use 1-chloro-2,6-dibromo-4-fluoro-benzene as an example. This molecule was one of those included in a
blind test of crystal structure prediction by the Cambridge Crystallographic Database (CCDC) and was referred to
as molecule XIII. We will use this name below. The cluster file is shown in Fig. 5. Note that the type names assigned
to the atoms reflect the C2v symmetry of the molecule —for example the two Br atoms, which are symmetry-related,
are both of type Br. We need to specify an axis system appropriate for the symmetry. The local axis file is shown
in Fig. 6.

We could use the global axis system, by not providing a local-axis file and by leaving out the type definitions in
the cluster file. However this leads to inconvenient sign differences between symmetry-related polarizabilities on
different atoms. The cluster file also imposes symmetry by specifying that, for example, the two Br atoms are of
the same type. This means that their polarizabilities and dispersion coefficients are constrained to be identical.
They should be identical anyway, with the local axes as defined in Fig. 6, but the grid of points used for the point-
to-point polarizabilities is not constrained to have the C2v symmetry of the molecule, because that would lead to
unnecessary duplication of computational effort.

Note that the local axes defined here are all right-handed. This means that the reflection taking C2 to C6 takes x
into x and z into z but y to −y. However y is perpendicular to the molecular plane, and any property that changes

35

Axes
C1 z from C1 to Cl x from C1 to C6
Cl z from C1 to Cl x from C1 to C6
C2 z from C2 to Br2 x from C2 to C3
Br2 z from C2 to Br2 x from C2 to C3
C6 z from C6 to Br6 x from C6 to C5
Br6 z from C6 to Br6 x from C6 to C5
C3 z from C3 to H3 x from C3 to C4
H3 z from C3 to H3 x from C3 to C4
C5 z from C5 to H5 x from C5 to C4
H5 z from C5 to H5 x from C5 to C4
C4 z from C4 to F x from C4 to C3
F z from C4 to F x from C4 to C3

End

Figure 6: Local axis definitions for molecule XIII.

sign under reflection in the molecular plane is zero by symmetry.

Now we can run the localize.py script, as for formamide:
localize.py XIII

And we’ve finally got our dispersion coefficients. Here’s part of the output (p. 36):

$ cat XIII_ref_wt4_L2_casimir.out

Title XIII ... XIII
XIII
Frequencies 0.5 10
Skip 0
Print nonzero

Molecule XIII
Site C2
10 10

5.72200000 5.70700000 5.61200000 5.27400000 +++
4.44000000 3.07700000 1.62100000 0.58700000 +++
0.11800000 0.00600000

...

...

...
Dispersion coefficients for XIII and XIII

C2 C2 C6 C7 C8 ...
00 00 0 88.39684131 0.0 4820.75066614 ...
00 11c 1 0.0 809.88012198 ...
00 11s 1 0.0 477.13620553 ...
00 20 2 -24.31832249 0.0 -3056.70651103 ...
...
...
...

Finish

36

8.4 Using Cluster to obtain the dimer geometry

The problem: We wished to study the interaction between
carbamazepine molecules in the crystal, but this molecule
was at the time too big for the calculation to be carried
out between whole molecules. With the current version of
CamCASP this dimer is not a problem, but similar frag-
ment methods are still useful in other, larger, systems. In
this case, we modelled the close interaction using a urea
fragment to represent part of one molecule and a benzene
fragment for part of the other. We needed to place the
fragments in the same relative geometry as in the carba-
mazepine molecules. We have the CBMZ crystal geome-
try from the X-ray structure.

TITLE CBMZ fragments
UNITS Bohr Degrees

! Define the molecules.
! We need the benzene and urea molecules, and the CBMZ (carbamazepine)
! dimer to form a template onto which we will place the benzene and urea.
! We define the benzene to lie in the xy plane
Molecule benzene
...
End

Molecule urea
...
End

Units Angstrom
Molecule CBMZcat
! Two molecules here; coordinates from the X-ray structure.
...
End

! We keep benzene nicely placed and rotate CBMZcat instead.
! Sites C9, C10 and C11 in CBMZcat are in one of the benzene rings.
Find rotation

Tol 0.03
From sites C9 C10 C11 in CBMZcat
To sites C1 C2 C3 in benzene

End
Rotate CBMZcat

Find translation
from site C9 in CBMZcat
to site C1 in benzene

End
Translate CBMZcat

! Print out the new CBMZcat geometry to confirm
! that its ring is superimposed on the benzene:
Show CBMZcat

! Alternatively, here’s a nice way of seeing
! whether all is well:
Join CBMZcat and benzene into tmp1
Write tmp1 in PDB format

37

We can see the benzene middle left, superimposed on the
lower CMBZ. (The view has been rotated – the benzene is
actually still in the xy plane.) All’s well, so let’s go on . . .

! Now place the urea in place
! It should align as follows:
! urea: C1u O1u N1u N2u H1u H2u H3u H4u
! CBMZcat : C30 O2 N4 N3 4H2 3H2 -- --

Find rotation
Tol 0.01
From sites C1u O1u N2u in urea
To sites C30 O2 N4 in CBMZcat

End

Rotate urea

Find translation
From site C1u in urea
To site C30 in CBMZcat

End
Translate urea

! Check that this is right:
Join urea and tmp1 into tmp2
Write tmp2 in PDB format

All’s well again, so let’s finish the job . . .

! Make a PDB file of the interacting fragments
! (not necessary for the calculation)
Join benzene and urea into benzene_urea
Write benzene_urea in PDB format

! Construct the files for the SAPT(DFT) job
Run-Type

SAPT(DFT)
Molecules benzene and urea
Basis Sadlej
Type MC+
Midbond 3s2p1d Position weighted
Interface files

End

Finish

Now use the runcamcasp.py script as in §8.1 to run the calculation.

38

9 CamCASP program specification

Usually the input dataset for CamCASP will be generated automatically with the Cluster command, and this is
usually a good starting-point in any case. Sometimes, however, it becomes necessary to modify the generated file,
so full details of the program input are given here.

See §6 for general notes on syntax descriptions. In the CamCASP input, the form SET keyword is used to start a
block which just sets parameters for later use, while BEGIN keyword is used for blocks that carry out a calculation.
In the latter case, the block is read to the end before the calculation is done.

The CamCASP input file begins with a title and memory declaration:

TITLE title
MEMORY memory [BYTES | KB | MB | GB]

The memory can be set in BYTES, KB, MB or GB.

It then continues with a series of data blocks, which are each described here in turn. In addition to the options
mentioned, most blocks have QUIET and VERBOSE options, to reduce or increase the amount of output, and a
DEBUG option, which is for development purposes and should not normally be needed.

In addition to numerical and string arguments in commands, some commands expect a switch (Boolean or logical)
value, which can be YES, Y, ON, TRUE or T, which are all equivalent, or NO, N, OFF, FALSE or F. If the switch value is
omitted it is assumed to be TRUE, which however may not be the default if the command is omitted altogether. Thus
the default if the ECHO command is omitted is TRUE but the default if the DEBUG command is omitted is FALSE.

9.1 Global data

SET { GLOBAL | GLOBAL-DATA | DATA }
settings

END

SET is optional. The settings are as follows. Most of them can be over-ridden by commands in individual modules:

CAMCASP-PATH absolute path to the CamCASP installation.
If set, the #include-camcasp command can be used to include files present in the CamCASP directory using only
the relative file paths. It will usually be set automatically from the CAMCASP environment variable.

UNITS unit unit . . .
where the available units are
ANGSTROM, ANG, BOHR or NM;
HARTREE, KJ/MOL, CM-1, eV or K/KELVIN;
DEG, DEGREE, DEGREES, RAD, RADIAN, or RADIANS.
Defaults are BOHR, HARTREE and DEGREES. The units set in this command are used for all output. They are also
used for input unless over-ridden by a local UNITS declaration in a module.

ECHO switch
If ON (the default) input is echoed to the output.

OVERWRITE [files] switch
OVERWRITE instructs the program to overwrite any existing files with the same names as those that the program
would normally use. If OFF (the default) the names are modified, by inserting a 3-digit code just before the file
suffix. The 3-digit code may be different for different files, depending on what files are already present. The file
names are printed in the program output, but to avoid confusion it is better to carry out each run in a different
directory.

{SCF-CODE | DFT-CODE} [{DALTON | DALTON2013 } | DALTON2006 | CADPAC | GAMESS(US) | NWCHEM]
Specifies the SCF code to use. Default DALTON, i.e., the Dalton program. (Cadpac is unlikely to be available for
most users.)

{XC-FUNC | XC-FUNCTIONAL | FUNCTIONAL} functional
Specify the exchange-correlation functional to be used. Available functionals are PBE PW91 PBE0 HCTH HCTH407.
Default PBE0.

39

{C-X | FRACTION-HF | EXACT-EXCHANGE} Fraction of exact-exchange
The default fraction is set according to the chosen functional and should not need to be changed. Use this command
if the exchange-correlation functional you have used is not included above.

DEBUG switch [MEM | MEMORY] [TIMER] [TYPES] [IO]
The DEBUG option sets debugging on or off for the whole calculation. However the setting can be over-ridden for
any module by a DEBUG option in that module. The MEMORY sub-option tracks memory allocation, the TIMER sub-
option prints timing information for subroutine entry and exit, the TYPES sub-option prints information about the
user-defined types used in the program, and IO prints information about input and output.

Setting any of these debugging options on does not mean information will be printed out. This would be over-
whelming. Rather, these options provide specific debugging information about only those modules in which the
DEBUG command has been used.

9.2 Molecule definition

Each molecule needs a main basis set and an auxiliary (density-fitting) basis set. For a property calculation there
will be just one molecule; for a calculation of intermolecular interactions there will be two. The molecules are
identified by name in most modules; the names are case-sensitive. The first two molecules to be defined may also
be referred to as A and B, and interaction energies will be calculated between these two by default.

Notes:

• Basis functions can be in SPHERICAL or CARTESIAN form and this needs to be specified.

• CamCASP can read basis sets in three formats: GAMESS (actually, GAMESS(US)), NWChem and TURBOMOLE.
This is specified by the FORMAT option.

• For the main basis, the sites must be specified in the same order as was used in the CADPAC, DALTON, NWchem
or GAMESS(US) runs. This is important. The site name, nuclear charge and position are followed by the
basis set specification, which can be typed in or #INCLUDEd from a file. Explicit paths are needed. The site
definition is terminated by a line containing three dashes: �.

• The auxiliary basis is defined in the same way, but it need not have the same number of sites, nor do they
need to be in the same order as the main basis. They are completely independent. However, for sensible
results you’d be better off keeping all sites.

MOLECULE name [AT x y z] [ROTATED BY angle ABOUT nx ny nz]
options
data
main basis specification
auxiliary basis specification

END

The molecule is taken to be at the global origin and not rotated unless otherwise specified.

The options are:

CHARGE q
The total charge on the molecule, in units of the proton charge.

ECHO switch
Switch echoing of input data on or off. This may appear in several places to switch the echoing of particular items.

If the molecular orbitals and Hessians are not needed, use the command
SKIP MOS

Otherwise, the molecular orbitals and Hessians should have been calculated at a previous stage, and they are
attached to the molecule description by the following commands:
{ MO | MOS | MO-FILE } [in] [file] file-name [ASCII | BINARY | ASCII-1]
{ H1 | H1-FILE } [in] [file] file-name
{ H2 | H2-FILE } [in] [file] file-name
HESSIAN-FORMAT {SAPT2002 | SAPT2006}
H1 and H2 refer to the electric and magnetic Hessians used in the polarizability calculation. The orbitals and

40

Hessians must have been calculated for the basis set and molecular geometry defined in the BASIS blocks. If a
rotation is applied to the molecule the orbitals and Hessians are rotated too and need not be recalculated, but this
only works at present if SPHERICAL basis sets are used. The HESSIAN-FORMAT command is used to specify the
format the Hessians have been written in. Use SAPT2002 or SAPT2006 depending on the patch you have used to
build Dalton. The default is SAPT2006.

The MO file is expected to be in ASCII format by default.

A special ascii format, ASCII-1 is also available. In this case the file format is
MO N
C(1, 1) C(1, 2) C(1, 3) . . . C(1,N)
C(2, 1) C(2, 2) . . . C(N,N)
ENERGY N
E(1) E(2) . . .

Here C(m, i) is the coefficient of the mth atomic orbital in the ith molecular orbital, and E(i) is the energy of the ith

molecular orbital. The keywords MO and ENERGY must appear at the start of a new line, but otherwise the numbers
are read in free format, separated by space or newline. N is the number of molecular orbitals.

Each basis set specification takes the form

BASIS { MAIN | AUX }
[CARTESIAN | SPHERICAL]
[FORMAT { GAMESS | TURBOMOLE | NWCHEM}]
[ECHO [ON | OFF]]
[UNITS length units]
label charge x y z [TYPE site-type]
[LIMIT limit]
basis specification for this atom

label charge x y z
[TYPE site-type]
[LIMIT limit]
basis specification

...

END

At present it is necessary to give the atom positions twice, once for the main basis specification and once for the
auxiliary basis. This makes it possible to use different sites for the main and auxiliary basis sets. However the entire
molecule definition is normally provided automatically for you by the Cluster program.

The limit option applies to individual atoms, and takes the form
LIMIT { S | P | D | F | G }
Limit the basis to this symmetry type, i.e. omit basis functions of higher angular momentum. The basis set is
usually specified by including it from a suitable file; for example:
#include /usr/local/camcasp/basis/gamess_us/sadlej/C

and the LIMIT command allows just (say) the s, p and d functions from the standard basis to be used. The default
is currently LIMIT G, as CamCASP can’t currently handle h or higher functions.

FORMAT { GAMESS | TURBOMOLE }
The basis function definitions that follow are in the format used by Gamess(US) or Turbomole, as specified. Default
is Gamess(US). The auxiliary basis library supplied with the CamCASP program uses basis sets in the Turbomole
program format. Note that the NWCHEM format is not available for this auxiliary basis set.

[CARTESIAN | SPHERICAL]
Use Cartesian basis functions (6-component d functions) or spherical (5-component d functions). Default is Carte-
sian as this results in a perceptible increase in accuracy of the density-fitting procedure. However the resulting
increased linear dependencies could cause problems in the density-fitting procedure.

UNITS { A | ANG | ANGSTROM | BOHR | AU | A.U.]}
Atom positions will be given in the specified unit. Only needed if this is different from the global unit.

41

9.3 The EDIT module: Modifying a molecular specification

Once defined, the molecule can be manipulated in much the same way as in the Cluster program. There is one
caveat: The commands involving a rotation will work only with main basis sets of spherical Gaussian type orbitals
(GTOs). The command takes the form
EDIT molecule-name

options
END

and the options are as follows:

{ TOL | TOLERANCE } tolerance
Specify tolerance used in finding rotations and comparisons.

RESTORE
Restore the molecule to its original configuration, as set up in the MOLECULE declaration, and restore the original
molecular orbitals.

Note that in the present version of CamCASP the Hessians are not rotated. This has consequences when an
ENERGY-SCAN is performed.

CENTRE [on/at] [[SITE] site | COM | XYZ x y z] Define the molecular centre to be at the position given.
If Cartesian coordinates are given, they are taken to specify a position within the molecule as originally defined,
i.e. in local molecular axes which rotate and translate with it.

{ WRITE | PRINT | SHOW } [{MO | MOS} {GEOM | GEOMETRY}]
Print the molecular orbitals or the molecular geometry on standard output.

BOND { -> | TO } { POINTS | XYZ | molecule }
SITES a3 a2 a1 { -> | TO } b1 b2 b3
{ DISTANCE | LENGTH | SEPARATION } distance [ANGSTROM | ANG | BOHR]

END
(Implemented but not fully tested.) Moves this molecule (molecule A) so that sites a2, a1, b1 and b2 are collinear
and arranged in that order, and so that sites a1 and b1 are the specified distance apart. If molecule A is non-linear,
a3 is a third site lying off the a1 − a2 axis, and molecules A is rotated about the a2 − a1 axis so that all six sites
are coplanar, with sites a3 and b3 cis to each other. If A is linear, then a3 is irrelevant, but at present it must still
be specified and must still lie off the a1 − a2 axis. It can be specified as a position in global coordinates using the
syntax XYZ x y z. Sites b1, b2 and b3 may be in another molecule B, or may be specified as cartesian positions in
global coordinates using the syntax XYZ x y z.

INVERT
Invert the site positions with respect to the molecular origin. (Not yet implemented.)

ROTATE BY angle [DEGREES | RADIANS] ABOUT nx ny nz

Rotate the molecule about an axis in the specified direction, through the molecular centre. The rotation is not
carried out until an UPDATE command is encountered.

TRANSLATE BY distance [ANGSTROM | ANG | A | BOHR | AU] ALONG x y z
The distance is assumed to be in the global units unless otherwise specified. The vector direction need not be a
unit vector — it is normalized by the program. The translation is not carried out until an UPDATE command is
encountered.

{ PLACE | POSITION | PUT] [at] [XYZ | POINT] x y z
Position (translate) the molecule so that its defined centre coincides with the specified point. The translation is not
carried out until an UPDATE command is encountered.

UPDATE [MOS | ORBITALS]
Carry out any translation and rotation that has been specified. Note that the rotation is about the molecular centre,
which moves with the molecule, so translation and rotation commute. If ORBITALS is specified, the molecular
orbitals and density matrix are rotated with the molecule.

NEIGHBOURS [TYPE [=] [ONE | ALL | OVR]] [EPS [=] <value|0.0>] [PRINT]
Every atom in a molecule has a list of neighbours. By default, this list contains every other atom, but it can be
changed using this command. There are three neighbourhood types that can be defined using the TYPE option.
Type ONE defines only one ‘neighbour’ for every atom: the atom itself. Type ALL is the default and defines all sites

42

as the neighbourhood. Finally, type OVR uses an overlap criterion and the value of EPS to decide which sites are to
be included in the neighbourhood. The latter is a basis and geometry-dependent criterion. We have not tested this
feature adequately, but it seems like a reasonable choice for EPS is 0.01. The list of neighbours for every atom in
the molecule can be printed out using the PRINT option.

The reason for implementing a concept of neighbourhoods is to speed up the evaluation of integrals. Using
NEIGHBOURS TYPE = OVR EPS = 0.01
we can significantly speed-up the evaluation of the numerical integrals needed for the ISA module, without a
significant reduction in the overall accuracy of the calculation. But it must be borne in mind that the largest speed-
ups are obtained for linear systems.

9.4 Density-fitting

ssec:df

Significant computational gains are achieved by expanding orbital products ρi j = φiφ j as a single index expansion:

ρi j(r) ≈ ρ̃i j(r) =
∑

k

di j,kχk(r).

This is usually achieved by the minimization of the functional:

∆i j =

" [
ρi j(r1) − ρ̃i j(r1)

] 1
r12

[
ρi j(r2) − ρ̃i j(r2)

]
dr1dr2

In CamCASP we additionally include constraints to impose the orthonormality of ρi j:∫
ρi j(r)dr = δi j,

and localization constraints that are used to obtain distributed polarizabilities [Misquitta and Stone, 2006]. The
latter are optional and should not be used in interaction energy calculations. This gives us two types of functional
that we minimize:

• In the first we include a term that minimizes the inter-site repulsion (the default):

ΞA
i j = ∆i j − η

∑
a,b,a

Eab
i j + λ

(∫
ρ̃i j(r)dr − δi j

)2

.

• In the second we include a term that maximizes the site self-repulsion:

ΞB
i j = ∆i j + η

∑
a

Eaa
i j + λ

(∫
ρ̃i j(r)dr − δi j

)2

.

where

Eab
i j =

" ρ̃a
i j(r1)ρ̃b

i j(r2)

r12
dr1dr2.

and ρ̃a
i j(r) is the (transition-)density associated with site a which is defined as

ρ̃a
i j(r) =

∑
k∈a

di j,kχk(r). (5)

For details and numerical results see Misquitta & Stone (2006) [Misquitta and Stone, 2006].

In addition to the above, the following constraint can be optionally included:

Ci j = γ
∑

a

[∫
ρa

i j(r)dr
]2

. (6)

This constraint forces the (transition-)density ‘charge’ on each site to be close to zero. The larger γ is, the more
strongly this condition is enforced. This constraint should be used with the transition densities only, and even
then with caution. When used together with a distributed polarizability calculation, this constraint has the effect of
suppressing the charge-flow polarizabilities.

This gives us a number of choices for the density-fitting. We recommend the following in everyday usage:

43

• For energy calculations use only the orthonormality constraint, that is, either ΞA
i j or ΞB

i j with η = 0.0 and
λ = 1000.0.

• Do the same for total molecular properties such as the molecular density, quantities that depend on the
total density, and total polarizabilities.

• For distributed polarizabilities perform the transition-density fitting using either ΞA
i j or ΞB

i j with η =

+0.0002 and λ = 1000.0.

• For the SRLO method of Rob & Szalewicz [Rob and Szalewicz, 2013] use ΞB
i j with the additional constraint

Ci j and γ = 1.0.

Many of the modules require density-fitting and while some will perform the density-fitting automati-
cally if it hasn’t already been done, it is generally a good idea to perform it explicitly.

The (ortho)normality constraints are checked if PRINT...NORMALIZATION... is used. The localization constraint
can be selected using the CONSTRAINT command.

BEGIN { DF | DENSITYFITTING | DENSITY-FITTING}
options
END

Or, to set parameters without performing the density-fitting:

SET { DF | DENSITYFITTING | DENSITY-FITTING}
options
END

The options are:

[MOLECULE name | DIMER]
Apply the fitting procedure to the specified molecule if MOLECULE is specified, or, if DIMER is specified, perform
the density-fitting for the dimer consisting of the first two molecules in the input file. That is, the dimer is assumed
to comprise molecules A and B. At present, there is no way to change the molecules in the dimer.

TYPE [OO] [OV | VO] [FULL | NN] [RHO] [RHO-W]
Specifies the type of density-fitting to perform. OO applies density-fitting only to occupied–occupied orbital pairs,
needed for the density. OV does the occupied–virtual pairs, which are needed for all second-order terms. FULL does
all pairs, and is the default.

For the dimer, only types OO and OV are available. Selecting type FULL will result in an error.

There are two special DF types:

• RHO fits the density directly.

• RHO-W is an experimental option that fits the difference of the density and (spherical) pro-atom densities.
These would typically be obtained from an iterated stockholder atoms calculation. The site-charge constraint
Ci j can be used in this context to enforce zero site charges of the RHO-W fit. This is an experimental option.
Please contact the authors if you are interested in this.

SOLVER { LU [[with] ITERATIONS iterations]
| GELSS [[with] CONDITION condition-number] }

Specifies the linear-equation solver to use. The LU solver is fastest but gets unstable for larger basis sets. In
principle the solution can be improved by iterating if the density-fitting equations are ill-conditioned, but we have
not experimented with this much and the default number of iterations is 0.

Usually the auxiliary basis set will be roughly three times the size of the main basis. But this may not be the
case if, say, you are using a Sadlej-pVTZ main basis together with a R12 aug-cc-pVTZ auxiliary basis which
can be four to six times as large as the Sadlej main basis. In this case, the density-fitting linear equations will be
near singular and LU will not result in reliable results. These equations can also be ill-conditioned for large, dense
systems. For these cases we suggest the GELSS solver which uses singular value decomposition (SVD) to solve
the density-fitting equations. The effective rank of the problem is determined by the condition number set using

44

CONDITION which has a default value of 10−8. Bear in mind that GELSS requires more memory and processing
resources than LU.

RESTART
Restart the density-fitting, using matrices calculated previously.

Note: Use this with care as the matrices will not be correct if the density-fitting options have changed.

ETA [=] η
η is the coefficient in front of the self-repulsion constraint term. Default = 0.0, i.e., no constraint. For distributed
polarizabilities use η = +0.0005 with the INTER-SITE constraint. We have no recommendations for the SITE
self-repulsion constraint.

LAMBDA [=] λ
λ applies to the (ortho)normality Lagrange multiplier. Default value 1000.0.

GAMMA [=] γ
γ applies to the SITE self-repulsion constraint only. It is new and still being experimented with. Default value
0.0. For the SRLO distribution method use γ = 1.0 together with CONSTRAINT SITE self-repulsion with
η = 0.0002 and λ = 1000.0.

CONSTRAINT [type] [SITE | INTER-SITE] [repulsion | self-repulsion]
Implement one of the two localization constraints described above. The default is the INTER-SITE constraint.

TOL [=] tolerance
Tolerance used in DF tests. Default 0.001.

PRINT { NOTHING | EVERYTHING | ALL }
PRINT [ONLY] REPULSION and NORMALIZATION [constraint/s] and SOLUTION }
Default is to perform the density-fitting tests and print the results. This is a good idea as (ortho-)normality violations
are usually indicative of problems either with the density-fitting or with an inconsistency in the molecular geometry
or orbitals.

REDO-DF-ON-ROTATION [TRUE | FALSE]
Repeat the density-fitting if the molecule has been rotated. The default is TRUE.

RESET
Parameter changes are normally saved. To reset to the default parameters, use this command.

DEBUGGING { switch | EXTREME [[and] MATRIX | MATRICES switch}
Default is OFF, and with debugging on, the default action is not to print the matrices. (They are large.)

[QUIET | VERBOSE]
Default is QUIET.

9.4.1 The DF-OLD and DF-FULL modules

These are earlier versions of the density-fitting code, which are still available but are not recommended for normal
use.

9.5 Propagator settings

This module is the heart of CamCASP. The propagator is used for calculations of the polarizability, induction
energies and dispersion energies. This module is also in a state of change and this version of the CamCASP
program contain two propagator modules. The newer module uses the method of Bukowski et al. [2005] to reduce
the computational effort needed to calculate the propagators. But it is still incomplete and only some types of
propagator can be calculated using this approach. Consequently we have still made available the older module. We
will describe both below.

A few levels of theory can be used for constructing the propagator. These are:

CKS : The coupled Kohn–Sham propagator, which is the most accurate.

CHF : Coupled Hartree–Fock.

45

UCKS : Uncoupled Kohn–Sham.

UCHF : Uncoupled Hartree–Fock.

The CKS propagator has additional possibilities, as you can add some fraction of the CHF propagator to it. This is
usually the case when a hybrid exchange-correlation functional, such as PBE0, is used. In this case you have the op-
tion of constructing the propagator using the PBE kernel only, or the (faster) adiabatic local density approximation
(ALDA) kernel, or part PBE/ALDA kernel and part CHF kernel.

Within linear-response Hartree–Fock/Kohn–Sham theory, the frequency-dependent density susceptibility (FDDS)
function is defined as

α(r, r′|ω) =
∑
n,0

2ωno

}(ω2
no − ω

2)
〈0|ρ̂(r)|n〉〈n|ρ̂(r′)|0〉, (7)

and ρ̂(r) is the electron density operator
∑

i δ(r − ri), where i runs over the electrons in the system. The FDDS
describes the linear response of the electron density to a frequency-dependent perturbation. Two practical ways of
evaluating the FDDS are coupled Hartree–Fock (CHF) theory and coupled Kohn–Sham (CKS) theory. Of these,
the latter is in principle exact, while the former is, by definition, an approximation and will not be used in this
work. The FDDS evaluated in both CHF and CKS theories can be written in the form

α(r, r′|ω) =
∑
iv,i′v′

Civ,i′v′ (ω)φi(r)φv(r)φi′ (r′)φv′ (r′), (8)

where the subscripts i and i′ (v and v′) denote occupied (virtual) molecular orbitals, Civ,i′v′ (ω) is related to the
polarization propagator, and φl is a molecular orbital. The coefficients Civ,i′v′ (ω) are conveniently written as

Civ,i′v′ (ω) = 4
[
(H(2)H(1) − }2ω2I)−1H(1)]

iv,i′v′ , (9)

where I is the unit matrix and the H(1) and H(2) matrices, called the electric and magnetic Hessians, respectively,
are defined in CKS theory (in the adiabatic approximation [Casida, 1995, Colwell et al., 1995]) as follows:

H(1)
iv,i′v′ = (ev − ei)δiv,i′v′ + 4(iv|i′v′) − ξ

[
(ii′|vv′) + (iv′|i′v)

]
+ 4

∫
φiφvφi′φv′

δ(vxc − ξvx)
δρ

d3r, (10)

and
H(2)

iv,i′v′ = (ev − ei)δiv,i′v′ − ξ
[
(ii′|vv′) − (iv′|i′v)

]
, (11)

where ξ is the fraction of the Hartree-Fock exchange included in the exchange-correlation (XC) functional (ξ =

0 for a continuum functional), vx is the exchange part of vxc, and the two-electron coulomb integral (i j|kl) =

〈φi(1)φ j(1)|r−1
12 |φk(2)φl(2)〉. This module calculates the FDDS expansion coefficients Civ,i′v′ (ω).

The direct evaluation of these coeffcients through eq. (9) incurrs a computational cost of O(o3v3) and a memory
cost of O(o2v2). This can be prohibitive and is usually not feasible for large systems. However this is not necessary
for as shown by Misquitta et al. [2003] and by Podeszwa et al. [2006], we use the density-fitted form of the FDDS
in all SAPT(DFT) calculations. In this case, for local and semi-local density functionals (for which ξ = 0.0),
Hesselmann et al. [2005] have shown that the computational cost of evaluating the DF-FDDS coefficients is only
O(ovM2) where M is the size of the auxiliary basis set. Furthermore, only O(M2) memory is used in this approach.

For the more general case when ξ , 0.0, that is, for a hybrid functional, Bukowski et al. [2005] have shown that
the FDDS can be computed with a computational cost that scales as the fifth power of the system size. At present
we do not have this more general method coded in CamCASP.

With this background we are now in a position to understand the way the propagator is calculated in CamCASP.
The PROPAGATOR module calculates the most general form of the propagator. The syntax for this module is:

SET PROP/PROPAGATOR
TYPE cks/ucks/chf/uchf +++

[WITH/PLUS/AND FRACTION-CHF-KERNEL <fraction of CHF kernel>]
{FRACTION-CHF-KERNEL | C-X-KERNEL} <fraction of CHF kernel to be included>
{FRACTION-CHF-FUNCTIONAL | C-X-FUNCTIONAL} <fraction of HFX in functional>
HESSIAN/S [from] [DALTON | CADPAC | INTERNAL]
DENSITY-FITTING/DF/DENSITYFITTING [T TRUE YES | NO F FALSE] +++

[WITH | WITHOUT] [CONSTRAINTS]

46

DIRECT/DF-INTS/DF-INTEGRAL/s [integral/s]
SOLVER [LU [ITERATIONS [=] <number of iterations|0>] +++

[GELSS [CONDITION [=] <condition number>]
KERNEL [ALDA/ALDAX]/[ALDA+CHF/FULL]
DEBUGGING ON/OFF/EXTREME

END

These options are described in sec. 9.5.1. Use this module for linear-response calculations with hybrid density
functionals only. While it will also work for standard GGAs like PBE, as explained above, this module is compu-
tationally expensive and is not suited for systems with more than 20 atoms.

For all non-hybrid kernels (i.e., ξ = 0.0 in eqns. (10) and (11)) use the NEW-PROP module:

SET NEW-PROP
RESET
PROPAGATOR-TYPE [UCKS | UCHF | CKS | ALDAX | ALDA]
{FRACTION-HF-FUNCTIONAL | CX-FUNC | CX-FUNCTIONAL}

<fraction of HFX in functional>
{FRACTION-CHF-KERNEL | CX-KERNEL } <fraction of CHF in kernel>
[{CONSTRAINED-DF | C-DF} | DF]
KERNEL-INTEGRAL-PARAMETERS
INFINITY-CONTROL-METHOD [ZERO | CONSTANT | FD (default)]
F-MAX [=] <value| default=1000.0>
RHO-EPS [=] <value| default=1e-8>
FD-DELTA [=] <value| default=0.01>
FD-ALPHA [=] <value| default=1.0>
KERNEL-INTEGRAL-CUTOFF [=] <value|default=par_kernel_integral_cutoff>

END
SOLVER [LU [ITERATIONS [=] <number of iterations|0>] +++

[GELSS [CONDITION [=] <condition number>]
[QUIET | VERBOSE]
DEBUG [ON | OFF | EXTREME]

END

These options are as follows:

RESET
Reset all parameters to the defaults.

PROPAGATOR-TYPE [UCKS | UCHF | CKS | ALDAX | ALDA]
Defines the type of propagator. Options are:

• ALDA: The adiabatic LDA kernel with the Slater exchange and PW91 correlation kernel. CKS is currently
synonymous with the ALDA kernel.

• ALDAX: The adiabatic Slater exchange kernel. This would typically result in errors of about 2-3% compared
with the ALDA kernel.

• UCKS/UCHF: The un-coupled Kohn–Sham and Hartree–Fock kernel.

FRACTION-HF-FUNCTIONAL fraction
Fraction of Hartree–Fock exchange. While not applicable to this module, it can be used to change settings in the
PROPAGATOR module.

[{CONSTRAINED-DF | C-DF} | DF]
Choose the type of density-fitting used in calculating the propagator. C-DF sets the density-fitting solution with
constraints and DF uses the density-fitting solution without constraints.

SOLVER [LU [ITERATIONS [=] <number of iterations|0>] +++
[GELSS [CONDITION [=] <condition number>]

Set the solver used for solving the propagator equations. Normally LU will suffice, but for higher accuracies use

47

GELSS. We do not recommend iterations with the LU solver. The condition number for the GELSS solver should be
around 10−15. The default is the value of par_condition_number in parameters.F90 and is currently 10−15.

KERNEL-INTEGRAL-PARAMETERS
INFINITY-CONTROL-METHOD [ZERO | CONSTANT | FD (default)]
F-MAX [=] <value| default=1000.0>
RHO-EPS [=] <value| default=1e-8>
FD-DELTA [=] <value| default=0.01>
FD-ALPHA [=] <value| default=1.0>
KERNEL-INTEGRAL-CUTOFF [=] <value|default=par_kernel_integral_cutoff>

END

The kernel integrals used to define the Hessian elements are susceptible to numerical noise as the ALDA kernel
contains terms involving negative powers of the density which diverge for large-r where the density tends to zero.
Three ways of controlling this divergence are provided:

• ZERO: Where the kernel integrand is greater than F-MAX, set the kernel to 0.0.

• CONSTANT: Here, where the kernel integrand is greater than F-MAX we instead set it equal to F-MAX.

• FD: Here we make the kernel integrand tend to zero smoothly using a Fermi–Dirac-type switching function
with parameters set by FD-DELTA and FD-ALPHA. The former sets the width of the FD switching and the
latter sets the asymmetry in the switching by raising the FD function to the power specified. It seems like
this parameter should not deviate from 1.0 by much so we have set it to 1.0.

For details of how this works see dft_Sx_PW92c.F90. The defaults should normally be sufficient and should be
modified only if absolutely necessary.

9.5.1 The PROPAGATOR module

This is the older and more computationally demanding propagator module, but it is still used when the ALDA+CHF
propagator is desired.

SET { PROP | PROPAGATOR }
settings

END

The possible settings are:

TYPE { CKS | CHF | UCKS | UCHF }
KS is Kohn–Sham; HF is Hartree–Fock; C is coupled, UC uncoupled. Default is CKS.

{ FRACTION-CHF | C-X } fraction
Fraction of exact exchange to include in the CKS. Must be in the range [0.0, 1.0]. Default 0.25.

{ HESSIAN | HESSIANS } [from] { DALTON | CADPAC }]
See below. Default is DALTON.

[DF | DENSITY-FITTING | DENSITYFITTING switch] [{ WITH | WITHOUT } CONSTRAINTS]
Default is OFF. Constraints will be needed if distributed polarizabilities are to be calculated.

[DF-INTEGRALS | DF-INTS]
The 2-electron integrals for the Hessians are to be constructed using a density-fitting algorithm. If this is set, make
sure you have made a call to module DF_FULL beforehand. This option is very useful for large problem sizes or
when the TRAN code in Sapt2006 cannot be conveniently called. It will be made the default option once tests are
complete.

KERNEL { { ALDA | ALDAX } | { ALDA+CHF | FULL } }
Default is FULL. See below.

[DEBUG | DEBUGGING] [switch | EXTREME]]
Default is OFF. Set ON for minor debugging printout. EXTREME prints out Hessian, integrals, etc.; use with caution.

48

Note on Hessians: If the propagator type is CKS, the Hessians are not completely constructed within this module,
and at least part needs to be read from file.

• Cadpac 6.5: The H1 and H2 Hessians are read from files h1A.data and h2A.data (or h1B.data and
h2B.data). The diagonal energy term (ei − e j) is not included in these files and so must be added inter-
nally.

• Dalton: Only the term
∫
φaφiφ

′
aφ
′
i(d(vxc − cxvx)/dρ)dr is included in the file h1A.data (or h1B.data). The

rest of H1 and all of H2 are constructed within this module. Also, when Dalton is used, the fraction of exact
exchange to be included needs to be explicitly specified, or else the code will stop (see FRACTION-CHF).

KERNEL setting: If set to ALDA or ALDAX the adiabatic local density approximation is to be used. ALDA includes
the exchange–correlation term, while ALDAX includes exchange only. It is assumed that the integral included in
h1A.data (or h1B.data) uses ALDA, but possibly with cx , 0, so that the term in h1A.data is (1 − cx) ∗∫
φaφiφ

′
aφ
′
id(vx)/dρdr. (Put vxc = vx in the expression given earlier.) This is experimental and is not the default.

9.6 Quadrature settings

The quadrature procedure may need to be specified if dispersion energies or coefficients are required. Here too the
entrire section may be omitted if the defaults are acceptable.

SET { QUADRATURE | QUAD }
settings

END

The possible settings are:

TYPE type [option]
The type may be GAUSS-LEGENDRE (or GAUSSLEGENDRE or GAULEG), or GAUSS-LAGUERRE (or GAUSSLAGUERRE
or GAULAG). The option is relevant only for Gauss–Legendre, where it specifies the transformation between the
0 < ω < ∞ range of (imaginary) frequency and the −1 < t < 1 or 0 < t < π/2 range of the Gauss–Legendre
quadrature. Allowed values are:

1: use the β × (1 + t)/(1 − t) transformation.

2: use the β tan(t) transformation (not recommended).

The default is Gauss–Legendre with option 1.

BETA β
Set the base frequency β (= ω0) for the Gauss–Legendre transformation. Default 0.5 Hartree.

ALPHA α
Value of α for the Gauss–Laguerre transformation. Default 0.

9.7 The ISA module

The ISA (iterated stockholder atom or iterated spherical atom) method is a procedure for separating the molecular
electron density into atomic components[Lillestolen and Wheatley, 2009, Misquitta et al., 2014]. In brief, each
atom a is associated with a spherically-symmetrical weight function wa(r), and the electron density is allocated
between atoms in proportion to the weight function at each point:

ρa(r) = ρ(r)
wa(r)∑
b wb(r)

.

In the ISA method, the weight functions are required to satisfy

wa(r) = 〈ρa(r)〉;

49

where the angle brackets denote a spherical average. That is, each weight function is the spherical average of the
corresponding atom density. When both of these equations are satisfied for every atom, the sum of the weight
functions (the promolecule density) is the best possible approximation to the electron density as a sum of spherical
densities, and the ρa provide an exact partition of the density into atom densities that are as nearly as possible
spherical.

The equations have to be solved iteratively, and achieving convergence rapidly and reliably is difficult. See Mis-
quitta et al. [2014] for details of the method. Various options are provided for adjusting the parameters of the
method to improve convergence, though the suggested values will usually be satisfactory.

The ISA data section in CamCASP takes the form
BEGIN ISA

DF-TYPE [=] { DOO | DOO-C | DRHO (default) | DRHO-C }
ISA-TYPE [DENSITY (default) | TRANSITION-DENSITY | OV]
ISA-METHOD [A | B1 | B2 | DF+ISA | A+DF (default)] [ZETA [=] ζISA (default=0.9)]
W-INIT [=] { ONE-GTO ALPHA0 [=] alpha0 | ALL-GTOS | DF | DRHO-C }
DF-PARAMETERS LAMBDA [=] λ

SOLVER { LU (default) | GELSS CONDITION [=] condition-number }
CONVERGENCE

options
END
TAILS

options for tail control
END

END ISA

• The DF-TYPE option specifies the density-fitting method to be used. Options are the occupied–occupied
solution without constraints, DOO, or with constrains, DOO-C, and the analogous density expansions DRHO
and DRHO-C. If a density-fitting calculation of TYPE OO has been done, then both DOO/-C and DRHO/-C will
be present.

• ISA-TYPE specifies whether the method is to be applied to the total electron density or to the occupied-virtual
transition densities. At present, only the DENSITY option is available.

• ISA-METHOD specifies the algorithm to be used. Of the options available, we recommend one of A, A+DF and
DF+ISA. The A algorithm (this corresponds to functional stock(A) in [Misquitta et al., 2014]) is appropriate
for large systems, as with an appropriate definition of the atomic NEIGHBOURS (see sec. 9.3), this algorithm
scales linearly with system size for sufficiently large molecules. However, the A algorithm results in a small
(10−3 electrons or so) charge violation with the supplied ISA s-function basis sets. The A+DF algorithm
fixes this by first converging the A algorithm, and then modifying the functional minimised to include some
fraction of the density-fitting functional. This fraction is controlled using the ζISA parameter. We should have
0 ≤ ζISA ≤ 1. ζISA = 0 gives just the density-fitting functional and ζISA = 1 gives just the ISA A functional.
We recommend values between 0.1 and 0.9. An alternative to A+DF is the DF+ISA algorithm which uses the
mixed DF and ISA functional at each iteration.

• W-INIT specifies the initial guess for the weight function. The choice is not critical and this option can
normally be omitted.

• The DF-PARAMETER λ (see §9.4) should usually be set to 1000.0, and this is the default.

• The linear-equation solver is normally LU, but it may be necessary to use the GELSS method, which uses
singular value decomposition.

The convergence options are
CONVERGENCE-TYPE [W (default) | RHO | CHARGE | Q]
W-DAMPING [=] ηdamp (default 0.0)
EPS-NORM [=] εnorm (default 1.0e−9)
EPS-Q [=] εQ (default 1.0e−3)
MAX-ITERATIONS [=] integer (default 120)
W-MIX-FRACTION [=] real (default 0.0) [SKIP-ITERATIONS integer (default 0)]
W-EPS [=] value [DECOUPLE | COUPLE (default)] +++
[S-BLOCK-ONLY (default) | ALL-BLOCKS] [ACTIVATE-AT εtail (default 1.0e−5)]

TAIL-ITERATIONS [=] integer (default 30)

50

POSITIVE-W [LAMBDA [=] λ (default 0.001)] for [MAX-ALPHA [=] α (default 0.2)] +++
[AUTO (default) [with] [ACTIVATE-AT [=] eps norm (default 1.0e−5)]]

[SELF-CONSISTENT-TAIL]
[SKIP-DUMMY-SITES [YES (default) | NO]]

Only the important commands will be described here.

• The convergence test is based on quantities ∆a for each atom a. ∆a is the difference between the normalized
overlap between successive iterations of the weight function for atom a, and 1. (|1−da|, in the notation of the
paper.) Convergence is usually considered to have been reached when ∆a is less than εnorm for every atom.
(See Misquitta et al. [2014].) This is CONVERGENCE-TYPE W. It is the default and is recommended.

• The convergence threshold is set by EPS-NORM. The default is 10−9 which is appropriate for most systems.

• The algorithm can be forced to stop after a maximum number of iterations set by MAX-ITERATIONS. The
default is 120 which is usually sufficient.

• As described in [Misquitta et al., 2014], the tail region is given an additional weight by using a tail-weighted
norm:

‖ f ‖tail =

∫
f (r) exp(+ε|r − Ra|

2) dr, (12)

where ε is a positive number that must be less than twice the smallest exponent in the basis set so as to ensure
integrability. We apply this weight to the s-function block only (S-BLOCK-ONLY). ε is set using W-EPS. The
default is ε = 0.17 which is appropriate for the ISA basis sets supplied with CamCASP, but it may need to
be made smaller if more diffuse basis sets are used. This additional weight is applied only after a certain
degree of convergence has been attained; specifically, when all the ∆a are smaller than the value εtail set by
the ACTIVATE-AT option. The default is 10−5.

• If the A+DF algorithm is used, the maximum number of iterations for the combined A and DF functionals
needs to be set. This is set using TAIL-ITERATIONS. The default is a maximum of 30 extra iterations. They
are called ‘tail iterations’ as the prime function of these extra iterations is to tweak the atomic density tails.

• The POSITIVE-W option allows the algorithm to attempt to dynamically suppress negative coefficients
in the ISA expansion if these are associated with s-functions with exponent less than the value speci-
fied by MAX-ALPHA. This is normally done automatically (AUTO) after convergence is deemed sufficient
(ACTIVATE-AT). This is an experimental option that can be disabled by setting POSITIVE-W LAMBDA =
0.0.

• Normally, as explained in [Misquitta et al., 2014], tail fixes are imposed during the ISA iterations. If
SELF-CONSISTENT-TAIL is present, then one additional iteration is conducted without a tail fix. In a sense,
this achieves a self-consistency in the atomic density tails.

• If the auxiliary basis set contains dummy sites (sites with basis functions but no nuclear charge) then the
usual algorithm may fail. The SKIP-DUMMY-SITES option allows the algorithm to skip dummy sites when
determining the convergence criterion.

An important aspect of the method is the need to control the behaviour of the weight-function tails. They can be,
and usually are, constrained to decay exponentially at long distance. The options for this procedure are:

[NO-FIX]
[FIX-DUMMY-SITES | NO-FIX-DUMMY-SITES (default)]
R1-MULTIPLIER [=] real (default 1.5)
R2-MULTIPLIER [=] real (default 3.5)
FUNC [=] [±1 | ±2 (default = +1)]
[TEST]
FIT-TYPE [=] [1 | 2 | 3 (default)]
TAG [=] string (default null)

• The NO-FIX option just suppresses the tail control. This option is not recommended; divergence will usually
ensue.

• Dummy sites are usually omitted from the promolecule, and if they are included the tail-fix should normally
omitted for such sites. NO-FIX-DUMMY-SITES is the default.

51

• The R1-MULTIPLIER multiplies the Slater covalent radius of each atom, giving a distance from the nucleus
beyond which the weight-function tail needs to be controlled by forcing exponential decay. Larger values
give faster but less reliable convergence. Increasing the default to 2.0 or 2.5 may be satisfactory, particularly
for larger atoms (or those which are electronegative).

• Some of the fitting methods used to determine the parameters in the tail-fix functions require a second radius
which is set by R2-MULTIPLIER.

• There are two kinds of tail function that can be used: w1(r) = A exp (−α|r − R|) and w2(r) = Arβ exp (−α|r − R|).
The FUNC command chooses between these two. If negative values are set, then the tail fix is fitted but not
applied.

• There are various ways of determining the parameters in w1 and w2. FIT-TYPE controls the method used and
defaults to 3 which is the charge-conservation procedure described in [Misquitta et al., 2014]. This option
does not require R2-MULTIPLIER.

• The ISA atom pro-atomic data is written to file and TAG can be used to modify the file name.

Output from this module comprises the weight functions, tabulated in a separate file for each atom type. The
CamCASP output also includes expressions for each weight function as an expansion in Gaussian functions. The
ISA atom densities ρa are saved in the program for use in other CamCASP modules.

9.8 Multipole moments

Distributed moments can be calculated from a partition of the molecular charge density into atom densities. We
recommend the use of the ISA atom densities for this purpose, but other density partitions can be used. The Gdma
2.2 program can also be used to calculate distributed multipole moments; see §9.8.2 below.

9.8.1 Distributed moments from atom densities

This module is used to calculate distributed moments using a partition of the electron density betwen atoms.
Syntax:

BEGIN MULTIPOLES | MOMENTS | DISTMOMENTS
[MOLECULE name (default is first molecule)]
RANK n
{DF | DENSITY-FITTING} [WITH | WITHOUT] [CONSTRAINTS] [TYPE [OO | RHO | RHO-W | ISA (default)]]
PRINT [ONLY] TOTAL [and] DISTRIBUTED [moments/multipoles]

END

The options are:

• The MOLECULE option is only needed if more than one molecule has been defined and the required molecule
is not the first one.

• RANK: Calculate multipoles up to the rank specified. Default 2, maximum 4.

• {DF | DENSITY-FITTING} [WITH | WITHOUT (default)] [CONSTRAINTS]
[TYPE [OO | RHO (default) | RHO-W | ISA]]

Specifies which type of density to use. The ISA expansion is recommended and is the default.

For types ISA and RHO-W the expansions should be created before calling this module.

Density-fitting for other types is done by this module if it has not been done explicitly in an earlier step, but
bear in mind that if the density-fitting solution with constraints has been requested, the actual values used
for the constraints are those set in the last call to the DF module. This may not be what you expect as many
calls to to the DF module are made internally. We strongly recommend that an explicit density-fitting call be
made if constraints are needed.

• PRINT items
Default is to print both TOTAL and DISTRIBUTED moments.

52

9.8.2 Gdma 2.2 module

The Gdma 2.2 module, written by Anthony J. Stone, has been interfaced with CamCASP and can be accessed
using the commands described below. This interface allows the densities obtained from the Dalton program to be
used by Gdma 2.2, albeit with some limitations. In particular, the Pople (6-31G, etc.) basis sets are not allowed.
Additionally, check-point files from the Gaussian program can still be used as before, without any limitations.

The Gdma 2.2 module is used as follows:

BEGIN GDMA
options

END

If a check-point file from Gaussian is to be used, enter Gdma 2.2 commands as you would normally (see the GDMA
manual). If Dalton or Cadpac 6.5 is to be used, omit the FILE command which is used to specify the name of the
check-point file and use the following command instead:

BEGIN GDMA
! FILE ... omit this command and use ...
MOLECULE <molecule name>
! Rest of GDMA commands follow as before
...
...

END

Here’s a sample set of commands:

BEGIN GDMA
MOLECULE <molecule name>
Bohr
Multipoles
Limit 4
Limit 1 H
Radius H 0.661
Punch H2O_dma_L4.punch

Start
END

For a description of the DMA method and options of the Gdma 2.2 module please see the manual, which should
be in the same directory as this file.

9.9 Display

It is possible to construct a display file containing a surface grid suitable for display in Orient. The possibilities
at present are to generate an isodensity surface for the whole molecule, with values of the molecular electrostatic
potential on the surface, or to generate isodensity surfaces for individual atoms. The electrostatic potential is
provided for an atomic surface too, but is less useful since atomic surfaces may pass close to other nuclei where
the potential becomes very high. Usually the grid will be used in Orient with a potential generated from the
multipole moments of just the atom in question.

For a molecular surface, the syntax is:
BEGIN DISPLAY

[MOLECULE name]
[MAXPOINTS Npts | MAXTRIANGLES Ntri]
MOLECULAR-DENSITY
SLATER-MULTIPLIER [=] Mslater (default 10.0)
ISODENSITY ρ

STEP [=] step [BOHR | ANGSTROM]
END

END

53

The MOLECULE line is not required if the display is wanted for molecule 1. The procedure initially sets up a
rectangular grid of points at interval step, large enough to contain spheres round each atom of radius Mslater times
the atom’s Slater covalent radius. The electron density is evaluated at each point, and interpolated to obtain a
triangulated surface grid at the specified isodensity. The electrostatic potential is then evaluated at each surface
grid point. MAXPOINTS or MAXTRIANGLES specify the maximum size of the grid; only one of these needs to be
specified as the other is obtained from the Euler formula. In most cases the default of 100,000 triangles should be
adequate.

For atomic surfaces, the procedure is similar, except that the initial grid only needs to be large enough to enclose
the individual atom sphere. The syntax is:

BEGIN DISPLAY
[MOLECULE name]
[MAXPOINTS Npts | MAXTRIANGLES Ntri]
AIM-ATOMS
ATOMS [=] [ALL | list of atom names]
W-MIN [=] Wmin

R-MAX [=] Rmax

SLATER-MULTIPLIER [=] Mslater (default 10.0)
STEP [=] step [BOHR | ANGSTROM]
[ANISO-ONLY]
AIM-METHOD [DF | ISA] [FUNC-EXPANSION | GRID-BASED] [with] [RHO | RHO-C]
ISODENSITY [=] ρ (default 0.001)
[PREFIX file prefix]

END
END

Here SLATER-MULTIPLIER, R-MAX and W-MIN are alternative ways of specifying the size of the grid. R-MAX
specifies the radius of the atom sphere explicitly, and W-MIN specifies it as the distance where the weight function
falls below the specified value. Any or all of these may be used; the radius taken is the largest of those specified.

If the display is required for some atoms only, the atom names can be specified on the ATOMS line. In this case,
make sure that all atoms have distinct names so the correct ones can be identified.

The file names used for the atom grids are of the form prefix_atom.grid, where atom is the name of the atom.

By default, the full atomic density (in the atom-in-a-molecule sense) is used to create the isosurface. This would in-
clude the pro-atomic density and the anisotropy. The ANISO-ONLY command causes the code to use the anisotropy
only. That is, the pro-atomic (spherical) density is subtracted off.

The atomic densities can be calculated in two main ways: using a density-fitting (DF) based partitioning scheme
or using the ISA scheme. These options can be set using the AIM-METHOD command which also accepts a few
qualifiers. For the ISA scheme, the partitioning can be achieved using either the atomic density expansions in
a basis set (this is the FUNC-EXPANSION option), or can be achieved using the ISA shape-functions through a
grid-based scheme (GRID-BASED). The former is fast as it works entirely in basis-space, but it is susceptible to
small negative terms that can affect the quality of the low-density isosurfaces. The latter is slower, but generally
yields better isosurfaces. Finally, the type of density used can be set using RHO (no constraints) or RHO-C (with
constraints). The density option affects the DF partitioning and the GRID-BASED ISA option.

9.10 Polarizabilities

BEGIN {POLARIZABILITY | POLARISABILITY}
MOLECULE <name>
INVERT [YES | NO]
SQ_FREQ omega2_1, omega2_2,...,omega2_n
SQ_FREQ omega2_n+1, omega2_n+2,...etc.
QUAD <number_of_points>
PROPAGATOR <prop_type> with FRACTION-CHF/C-X <fraction> [and]

HESSIAN/S [from] DALTON/CADPAC
{SPHERICAL | CARTESIAN}
RANK <rank>
CALCULATE [ONLY] TOTAL [and] DIST/DISTRIBUTED +++

[pols/polarizabilities][and] PERTURBATIONS

54

P2P-RESPONSE
ORIENT-LATTICE
#include <Orient lattice file>

END
PERTURBATION-LATTICE
x y z [q]
...

END
FILE-PREFIX <prefix of output ORIENT grid files>
FILE-SUFFIX <suffix of output ORIENT grid files>

END
PRINT NOTHING
PRINT [ONLY] TOTAL [and] DIST/DISTRIBUTED ONLY_STATIC/STATIC

(also accepts the use of POLS/POLARIZABILITIES)
PRINT [pols] [for] ORIENT [and] PFIT
PRINT [upto] RANK <n>
{CENTRE | CENTER} COM/[XYZ x,y,z] [[ANG/ANGSTROM]/[BOHR]]
POL-FILE pol_file_prefix
PERT-FILE pert_file_prefix
PFIT-FILE pfit_file_prefix
PFIT-CUTOFF <pfit_cutoff>
DEBUGGING ON/OFF

END

Options for the polarizability module are:

MOLECULE name
The default molecule is A.

INVERT switch
Invert the molecule. Inversion gives polarizabilities for the enantiomorph. The changes are trivial, involving some
changes of sign, but inversion can be used to check the sign changes.

SQ-FREQ ω2
1, ω2

2, . . . , ω2
n

SQ-FREQ ω2
n+1, ω2

n+2, . . .
Specify frequencies explicitly. Several lines may be used if necessary. The values given are the squared frequen-
cies, and are negative for imaginary frequencies. Default is to calculate just the static polarizability. Non-zero
frequencies are normally set in the QUADRATURE section and need not be given here, but if they are given here they
over-ride any values set previously. This command cannot be used together with QUAD (below).

QUAD number of quadrature points
This is the second method for setting the complex frequencies at which the polarizabilities are to be calculated.
Real frequencies are not possible using this command. The quadrature points are calculated using the settings in
the QUADRATURE section. This command cannot be used together with SQ-FREQ (above).

The static polarizabilities will be calculated in addition to frequency-dependent polarizabilities calculated at the
specified number of non-zero complex frequencies.

Use this option for calculations of polarizabilities to be used by the Pfit and Casimir programs to calculate disper-
sion coefficients. Ten quadrature points are enough to ensure converged dispersion coefficients.

{ SPHERICAL | CARTESIAN } [tensor form] [to] [RANK] rank
Polarizabilities are calculated up to the specified rank, in Cartesian or spherical-tensor form. 0 ≤ rank≤ 4. De-
fault 2.

CALCULATE item [and] item [and] ...
Specify the quantities that are to be calculated. They can be any or all of
TOTAL [pols | polarizabilities]
[DIST | DISTRIBUTED] [pols | polarizabilities]
PERTURBATIONS
The last of these specifies ‘point-to-point’ polarizabilities; that is, the change in potential at a point P resulting
from the change in charge distribution induced by a unit point charge at Q. These quantities are used to refine

55

the distributed polarizabilities. It is necessary in this case to define the grid of points for which point-to-point
polarizabilities are required; this is done in the LATTICE section. Default is to calculate total and distributed polar-
izabilities.

PRINT [[to] RANK n] [NOTHING | item [and] item ...
Results are always sent to suitable files, but can also be printed on standard output if required. Any or all of the
following items can be specified, or NOTHING can be used to suppress this printing:

TOTAL [pols | polarizabilities]
[DIST | DISTRIBUTED] [pols | polarizabilities]
[ONLY_STATIC | STATIC] [pols | polarizabilities]
[polarizabilities for] ORIENT
[polarizabilities for] PFIT

The default is to print results up to the maximum calculated rank both in a form suitable for Orient, and in a form
suitable for Pfit. Specifying a rank will limit the printing on standard output to that rank. This may be useful if
the molecule has many sites and you are computing high rank polarizabilities. It does not limit the printing of
polarizabilities in Orient format.

[CENTRE | CENTER] [COM | XYZ x, y, z [ANG | ANGSTROM] | BOHR]]
Take the molecular origin as specified. (Note that polarizabilities above dipole depend on the choice of origin.)
The default centre is the origin of global coordinates. (This usage is deprecated. Please use the EDIT block to set
the molecule centre.)

POL_FILE pol_file_prefix
PERT_FILE pert_file_prefix
PFIT_FILE pfit_file_prefix
If the global OVERWRITE option is NO, output in Orient form is written to file pol_file_prefix_nnn.dat, where nnn
is a 3 digit integer chosen to avoid over-writing existing files. If the global OVERWRITE option is YES, the file-name
used is pol_file_prefix.dat, whether it already exists or not. The default pol_file_prefix is pol_out.

Similarly, the perturbations (point-to-point polarizabilities) are written out in a form suitable for the Pfit pro-
gram in file pert_file_prefix_nnn.dat or pert_file_prefix.dat, and the output in Pfit form is written to file:
pfit_file_prefix_nnn.dat. The default pert_file_prefix is alphaPP, and the default pfit_file_prefix is pfit.

PFIT-CUTOFF cutoff Omit polarizabilities smaller in magnitude than the specified cutoff from the file of polariz-
abilities in Pfit form.

9.10.1 Visualising the point-to-point responses

P2P-RESPONSE
ORIENT-LATTICE
#include <Orient lattice file>

END
PERTURBATION-LATTICE
x y z [q]
...

END
FILE-PREFIX <prefix of output ORIENT grid files>
FILE-SUFFIX <suffix of output ORIENT grid files>

END

The point-to-point polarizabilities can be visualised on a surface (using Orient) when calculated using this set of
commands. There are two main blocks:

• ORIENT-LATTICE...END: Specify the lattice of points on which the calculations are to be preformed. The
lattice is in the form output by Orient in its DISPLAY module. For a complete description see the Orient
manual. Here is an example of how this might be done:

Display energy
Title "pentapyralene...Q 1.0 induction "
Molecule pentapyralene

56

! Specify the grid:
Radii scale 1.0
Step 0.75 B
Grid exp
! And the colour map:
Colour-map
0 210 0.25 1
6 240 0.75 1

12 300 1.0 0
18 360 0.75 1
24 390 0.25 1
End
Viewport 25
Colour-scale min -20 max +10 top +10
Probe X
Ball-and-stick
Write pentapyralene_1.0vdW.grid no values

End

This example would write out the grid (points and triangles) into file pentapyralene_1.0vdW.grid. This
file could be included into CamCASP using

ORIENT-LATTICE
#include pentapyralene_1.0vdW.grid

END

• PERTURBATION-LATTICE...END specifies the set of points at which the perturbation charges are placed. At
least one point should be defined. The point-to-point perturbations are then calculated by placing the point
charge perturbation at each of these points in turn, with every one of the ORIENT-LATTICE points. Each set
is saved to an individual file than will contain the lattice in Orient format but will additionally include the
value of the response. The responses can be read and displayed by Orient using a set of commands similar
to those given above:

Display energy
Title "pentapyralene...Q 1.0 induction "
Molecule pentapyralene
Import pentapyralene-dz-1.5vdW-1.resp with values
Colour-map
0 210 0.25 1
6 240 0.75 1
12 300 1.0 0
18 360 0.75 1
24 390 0.25 1
End
Viewport 25
Colour-scale min -0.07 max +0.07 top +0.05
Probe X
Ball-and-stick

End

Where the file pentapyralene-dz-1.5vdW-1.resp contains the responses for perturbation point 1.

The responses from the point charge perturbation are saved in separate files. These take the form
PREFIX-<number>.SUFFIX. By default, the prefix is P2Presp and suffix resp. These can be altered using the
commands FILE-PREFIX and FILE-SUFFIX.

57

9.11 Lattice

For point-to-point polarizabilities and energy scans it is necessary to specify the grid of points to be used. This
section sets parameters for the grid but it is not constructed until needed.

SET LATTICE
CHARGE LatticeCharge
UNITS [BOHR | ANGSTROM]
POINTS
...

{END | ---}
RANDOM nlat
SEED seed
STEP step
LOWLIM lowlim
HIGHLIM highlim
GRID <generate a grid using highlim and lowlim (see below)>
NEWGRID icosahedron grid.
SPHERE lebedev grid of radius lebrad and type nscheme.
ORIGIN origin(1),origin(2),origin(3)
RADIUS lebrad
NSCHEME nscheme
DEBUG

END

The options are:

CHARGE q
Specify the charge to be associated with each lattice point. Default −1 a.u. The charge is formally arbitrary since
we are dealing with linear response, but the choice may have numerical implications.

RANDOM n
Construct a random grid (subject to constraints below) with a total of n points. (Default 2000.)

SEED seed
Specify the seed for the random number generator. Default 1.

STEP step
Target grid-point spacing for non-random grids.

[LOWLIM | LOLIM] l
[HIGHLIM | HILIM] h
Confine the grid to the region between the vdW×l and vdW×h surfaces. Defaults: l = 2.0, h = 4.0.

NEWGRID
Generate a grid using a Goldberg icosahedron scheme.

ORIGIN x y z
Specify the centre of a spherical-shell grid.

RADIUS lebrad
NSCHEME nscheme
SPHERE
Construct a Lebedev grid of radius lebrad and type nscheme.

We recommend using a RANDOM grid for most calculations. The form of the input would be typically
SET LATTICE
Charge -1
HighLim 2.0
LowLim 4.0
Random
Seed integer

58

END
Keep in mind that the SEED will need to be changed if you want a different set of random points.

9.12 Numerical integration grid

Numerical atom-grids are used by many modules including the GDMA and ISA modules and also the kernel integral
module. These grids are normally automatically set by the CamCASP program, but can be adjusted using the GRID
module commands:

BEGIN GRID | INTEGRATION-GRID
MOLECULE name
GRID-TYPE Lebedev (default) | Gauss-Legendre
RADIAL-POINTS integer (default = 80)
ANGULAR-POINTS integer (default = 590)
BECKE-SMOOTHING-PARAMETER integer (default = 3)
RELATIVE-RADII EQUAL | SLATER (default) | name radius name radius ...
RADIUS-SCALING [=] real (default = 1.0)
WRITE | FILE file name
[DEBUG]

END

Atom-grids are generated using an angular grid with either Lebedev or Gauss-Legendre quadrature and number
of points greater than or equalt to that specified with ANGULAR-POINTS. This is combined with an atom-centered
radial grid with points specified with RADIAL-POINTS. The BECKE-SMOOTHING-PARAMETER determines how the
integration weights are allocated to atoms. The default value of 3 results in a fairly smooth transition of the weights
between atomic domains. The smaller the parameter is, the smoother this transition will be.

The relative sizes of the atoms are normally taken from their Slater radii (RELATIVE-RADII SLATER). This is the
default. The radii govern the sizes of the atomic domains (where the weights allocated to the atom are large). The
radii can be uniformly scaled using RADIUS-SCALING, or can be made equal using RELATIVE-RADII EQUAL. Or
can be set for each atom using RELATIVE-RADII name radius name radius The atom names should be
the atom labels used in the molecule specification. The units of the relative radii should be BOHR to make them
consistent with the default radii.

Credits
The original C-code on which the module that generates the atom-grids is based was provided by
Dr. Dmitri N. Laikov and translated into fortran by Dr. Christoph van Wuellen. The routines may be
obtained in original form from
http://www.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids/index.shtml.

9.13 Electrostatic interaction E(1)
elst

The first-order electrostatic energy E(1)
elst is calculated using integrals obtained via density-fitting. This results in

errors of about 0.2% when the R12-optimized auxiliary basis sets are used. Perhaps basis sets optimized for the
density should be used. This has yet to be tested.

The PROBE command can be used to calculate the interaction with a point-charge probe at a specified location.

[BEGIN | SET] {ELST | E1ELST}
UNITS [{A | ANG | ANGSTROM} | {BOHR | AU | A.U.} <must come before PROBE>
PROBE [molecule | atom] [A | B] [with] CHARGE <charge> AT <x> <y> <z>
COULOMB [energy] [for] [molecule | atom] {A | B}
{REG | REGULARISE | REGULARIZE} ETA [=] <reg_eta>
INTEGRAL [SWITCH [=] <switch>]
[USE-DRHO {with} [CONSTRAINTS | NO-CONSTRAINTS]]
[RESET | DEFAULTS | DEFAULT]
QUIET
VERBOSE
DEBUG

END

59

Use BEGIN to calculate an energy and SET to define parameters which will be used in a subsequent energy calcu-
lation. SET is useful when performing ENERGY-SCANs.

Options:

UNITS [A | ANG | ANGSTROM | BOHR | AU | A.U.]
This must come before PROBE if required.

PROBE [molecule | atom] { A | B | name } [with] CHARGE q AT x y z
Probe the electrostatic potential around the specified molecule by calculating its interaction with the specified point
charge. (The option of denoting the molecule by name rather than by A or B is not yet implemented in this module.)

{ REG | REGULARIZE | REGULARISE } ETA [=] η
Regularize the intermolecular potential — that is, remove the Coulomb singularities, replacing 1/rki by

(
1 −

exp(−ηr2
ki)

)
/rki in the attraction between nucleus k and electron i. See the Theory section (currently in prepara-

tion) for details. Default is no regularization.

COULOMB [energy] [for] [molecule | atom] { A | B | name }
The COULOMB command calculates the electron–electron, electron–nuclear and nuclear–nuclear intramonomer en-
ergy of a specified molecule. This was required for a particular problem and will probably not be generally useful.

INTEGRAL-SWITCH [=] switch value
The INTEGRAL-SWITCH option can be used to control the way some integrals are computed. The default and
recommended value is 1, which specifies that certain integrals are to be computed without density-fitting. A value
of 0 specifies that density-fitting is to be used weherever possible.

[USE-DRHO {with} [CONSTRAINTS | NO-CONSTRAINTS]]
Evaluate the electron–electron repulsive energy using an expansion fitted directly to the density. By default, the
code assembles the total electronic density from expansions of the squares of the occupied molecular orbitals. This
command allows a more direct evaluation of the density, and, at least in principle, a more accurate one.

RESET
Parameter changes are normally saved. To reset to the default parameters, use this command.

9.14 First-order exchange (exchange-repulsion) E(1)
exch

Calculate the first-order exchange energy between molecules A and B using the single-exhange (S 2) approximation.
Integrals are obtained using density-fitting.

[BEGIN | SET] E1EXCH
REG/REGULARISE/REGULARIZE [with] ETA [=] <reg_eta>
OVERLAP [integrals] [ALGORITHM [DF [WITH | WITHOUT] [CONSTRAINTS]] [{ISA | STOCKHOLDER}]]
INTEGRAL [SWITCH [=] <switch>]
NO-E1EXCH
QUIET
VERBOSE
[RESET | DEFAULTS | DEFAULT]
DEBUG

END

Use BEGIN to calculate an energy and SET to define parameters which will be used in a subsequent energy calcu-
lation. SET is useful when performing ENERGY-SCANs.

Options:

{ REGULARISE | REGULARIZE | REG } [with] ETA [=] η
Use the regularized Coulomb potential. That is, remove the Coulomb singularities, replacing 1/rki by

(
1−exp(−ηr2

ki)
)
/rki

in the attraction between nucleus k and electron i. See the Theory section (currently in preparation) for details. De-
fault is no regularization.

OVERLAP [integrals] [ALGORITHM [DF [WITH | WITHOUT] [CONSTRAINTS]] [{ISA | STOCKHOLDER}]]
Calculate the overlap integrals. This can use the DF solution with or without constraints. Default is without con-

60

straints. By default the overlap integrals are not calculated at all. The ISA algorithm is experimental and not
accessible in this version of the program.

INTEGRAL-SWITCH [=] switch value
The INTEGRAL-SWITCH option can be used to control the way some integrals are computed. The default and
recommended value is 1, which specifies that certain integrals are to be computed without density-fitting. A value
of 0 specifies that density-fitting is to be used weherever possible.

NO-E1EXCH
Skip the calculation of E(1)

exch. This only makes sense if OVERLAP is used to calculate the overlap integrals.

RESET
Parameter changes are normally saved. To reset to the default parameters, use this command.

9.15 Second-order induction energy E(2)
ind,tot

The second-order induction energy E(2)
ind,tot is calculated using the propagator defined in sec. 9.5. At present, only

the density-fitted expression can be calculated using this module (though the non-DF induction can be calculated
using an older module). By default, the induction energy of molecules A and B is calculated. However, using
PROBE, the induction energy of a molecule with a point charge at a specified position can also be calculated.

If the second-order dispersion energy has been calculated before a call to this module, computational effort can be
reduced by using the FORCE command to stop the initialisation of the J-integrals (JINT).

This module can use the R-SRS theory described by Patkowski et al. [2012] to evaluate the induction and exchange-
induction energies. Here, the amplitudes are computed in the field from the regularized nuclear potentials of the
partners, but the energies evaluated using the full potential. Regularization is a convenient and robust way to define
a basis-independent charge-transfer energy. Full details of how the regularized induction energy is defined are
given by Misquitta [2013].

The idea here is to write the singular electron–nuclear potential as a short-ranged, singular part and a long-ranged
part that is well-behaved. In the notation used by Patkowski et al. this is expressed as

1
r

= vp(r) + vt(r), (13)

where vt is the singular, short-ranged part and vp the long-ranged, well-behaved part of the nuclear potential.
Various schemes can be used to achieve this splitting, CamCASP uses the Gaussian-based scheme [Patkowski
et al., 2001b]:

vp(r) =
1
r

(
1 − e−ηr2)

,

vt(r) =
1
r

e−ηr2
. (14)

In the version of regularized SRS theory (R-SRS) derived by Patkowski et al. [2012] the dimer wavefunction cor-
rections are obtained in response to the interaction operator with regularized nuclear potentials, but the interaction
energy corrections are calculated using the original, un-regularized interaction operator. For the second-order in-
duction energy this means that we calculate the first-order induction wavefunction correction in response to the
regularized electrostatic potential ωB

Reg:

ωB
Reg(r) = −

∑
β

Zβvp(r − Rβ) +

∫
ρB(r′)
|r − r′|

dr′, (15)

to give

ΦA
0 (1)[Reg] =

∑
r,0

ΦA
r 〈Φ

A
r |Ω̂

B
Reg|Φ

A
0 〉

EA
0 − EA

r
, (16)

where many-electron electrostatic operator is defined as Ω̂ =
∑

i∈B ω
B
Reg(ri). The regularised second-order polariza-

tion component of the induction energy is then defined as:

E(2)
ind,pol(Reg) = 〈ΦA

0 |Ω̂
B|ΦA

0 (1)[Reg]〉. (17)

61

To this, as always, we need to add the similarly regularized exchange-induction energy [Jeziorski et al., 1994,
Patkowski et al., 2004].

The SAPT(DFT) expression for the polarization part of the induction energy of monomer A in response to the field
of B is

E(2)
ind,tot(A← B) = 2si

v(ωB)v
i (18)

where i and v label occupied and virtual states, (ωB)v
i are matrix elements of the unperturbed potential of monomer

B and the amplitudes si
v are obtained, in the case of SAPT(DFT), by solving the coupled Kohn–Sham equations

H(1)
A sA = −ωB (19)

where H(1)
A is the electric Hessian [Casida, 1995, Colwell et al., 1995] of Kohn–Sham linear-response theory that

is given in full form for hybrid functionals by Misquitta and Stone [2008a]. The expression for E(2)
ind,exch(A← B)

also involves the amplitudes defined above, though the matrix elements multiplying it are more complex and are
given in full form by Jeziorski et al. [1993], Patkowski et al. [2012]. Analogous expressions exist for the induction
energy of monomer B due to the field of A.

We now define the second-order charge-transfer energy as

CT(2)(Reg) = E(2)
ind,tot − E(2)

ind,tot(Reg). (20)

Here E(2)
ind,tot(Reg) is the regularized second-order induction energy that may be identified with the true polarization

energy. There is no basis restriction on the above definition, except that the basis set used needs to be large enough
to converge the total induction energy, which is the usual requirement for any energy calculation.

There is one free parameter in this model for the charge-tranfer: η in eq. (14) determines the length-scale for the
regularisation. Misquitta [2013] has shown that for a variety of systems the choice η = 3.0 a.u. is appropriate. This
is the default here, but may be altered using the commands listed below.

{SET | BEGIN} {IND | INDUCTION | E2IND}
USE [the] {DF | DENSITYFITTING | DENSITY-FITTING} [algorithm]
NEW-PROP
UNITS [{A | ANG | ANGSTROM} | {BOHR | AU | A.U.}] (must come before PROBE)
PROBE [molecule | atom] [A | B] [with] CHARGE <charge> AT <x> <y> <z>
FORCE [NO] {INITIALIZE | INIT}
{REG | REGULARISE | REGULARIZE} ETA [=] <reg_eta>
INTEGRAL [SWITCH [=] <switch>]
NO-EXCHANGE
AMPLITUDE-TYPE [COUPLED | UN-COUPLED]
[RESET | DEFAULTS | DEFAULT]
QUIET
VERBOSE
DEBUG/DEBUGGING [T/TRUE/ON/YES or F/FALSE/OFF/NO] [EXTREME]

END

Use BEGIN to calculate an energy and SET to define parameters which will be used in a subsequent energy calcu-
lation. SET is useful when performing ENERGY-SCANs.

Options:

USE [DF | DENSITYFITTING | DENSITY-FITTING]
This is always ON and need not be specified.

NEW-PROP
Uses the new propagator module. This is applicable only for the ALDAX, ALDA and UCKS | UCHF propagator types.

UNITS [A | ANG | ANGSTROM | BOHR | AU | A.U.]
This must come before PROBE if required.

PROBE [molecule | atom | name } [with] CHARGE q AT x y z
Probe the induction energy of the specified molecule interacting with the specified point charge.

62

{ REG | REGULARIZE | REGULARISE } ETA [=] η
See above.

QUIET
VERBOSE
DEBUG
Default is VERBOSE, debugging off.

NO-EXCHANGE
Skip the calculation of the exchange-induction energy.

INTEGRAL-SWITCH [=] switch value
Sets the algorithm used to compute some of the two-index integrals (nuclear and overlap). Possible switch values
are:

• 0: Use density-fitting. Lower accuracy.

• 1: Higher accuracy. Recommended and the default.

AMPLITUDE-TYPE [COUPLED | UN-COUPLED]
Set the method used to compute the second-order induction amplitudes. This affects the exchange-induction energy
calculation only. The default is to use coupled amplitudes as this results in the highest accuracy. At the present,
the coupled amplitude calculation uses an algorithm that is memory intensive. Consequently, for large systems
we recommend using the more approximate un-coupled amplitudes, in which case the code estimates the coupled
result using scaling:

E(2)
ind,exch[C] ≈ E(2)

ind,exch[UC] ×
E(2)

ind,pol[C]

E(2)
ind,pol[UC]

. (21)

In practice, the above approximation does not lead to large errors in the total interaction energy.

RESET
Parameter changes are normally saved. To reset to the default parameters, use this command.

9.16 Second-order dispersion energy E(2)
disp,tot

The second-order dispersion energy E(2)
disp,tot is calculated using the propagator defined in section PROPAGATOR.

Both the density-fitted and non-density-fitted propagators can be used. Only the former (default) should be used
for large calculations.

{SET | BEGIN} {DISP | DISPERSION | E2DISP}
USE [the] [{DF | DENSITYFITTING | DENSITY-FITTING} | NODF] [algorithm]
FORCE-INITIALIZE
NEW-PROP
{QUAD | QUADRATURE} [grid] [with] <n> [point/s]
NO-EXCHANGE
INTEGRAL [SWITCH [=] <switch>]
[RESET | DEFAULTS | DEFAULT]
DEBUG
{QUIET | VERBOSE}

END

Use BEGIN to calculate an energy and SET to define parameters which will be used in a subsequent energy calcu-
lation. SET is useful when performing ENERGY-SCANs.

Options:

USE [DF | DENSITYFITTING | DENSITY-FITTING | NODF]
Density-fitting is used by default in the calculation of the dispersion energy. Specifying NODF here causes a different
algorithm to be used, without density-fitting.

63

FORCE-INITIALIZE
Forces a re-initialization of the module.

NEW-PROP
Uses the new propagator module. This is applicable only for the ALDAX, ALDA and UCKS | UCHF propagator types.

NO-EXCHANGE
Skip the calculation of the exchange-dispersion energy.

INTEGRAL-SWITCH [=] switch value
Sets the algorithm used to compute some of the two-index integrals (nuclear and overlap). Possible switch values
are:

• 0: Use density-fitting. Lower accuracy.

• 1: Higher accuracy. Recommended and the default.

{QUAD | QUADRATURE} [grid] [with] <n> [point/s]
Set the number of quadrature points used in the (imaginary) frequency integration grid. The details of this integra-
tion are set in the QUAD block described in sec. 9.6. The default is 10 points.

RESET
Parameter changes are normally saved. To reset to the default parameters, use this command.

9.17 Energy scan

Energy scans using one molecule or a charge as a probe can be performed using this module. There are some
limitations in the module:

• There is no limitation if the energy scans are to be performed without molecular rotations.

• If molecules are to be rotated, bear in mind the following:

◦ For molecule...atom scans, if the molecule is kept fixed and only the atom moved around, there is no
problem at all.

◦ For molecule...molecule scans, only the overlap integrals and first-order energies can be correctly
scanned at present. This is because the Hessians needed for the second-order energies are not yet
rotated correctly. Also, such a scan limits you to use auxiliary basis sets with spherical GTOs. Bear in
mind that this leads to lower accuracies in the density-fitting. We are working to resolve this problem.

The list of points at which the scan is to be performed will usually be read in from file (if USE POINTS is used) or
defined in the LATTICE module (if USE LATTICE is used).

The data generated by the energy scan module can be used by the Orient
program to produce a graphical display of the energy over a molecular
surface. In this case the grid of points would be generated by Orient,
exported to a file, and read into CamCASP using the POINTS option. The
Figure shows the map of dispersion energy between formamide and a
neon atom, calculated in this way.

BEGIN SCAN/ENERGY_SCAN
{PROBE | SCAN} [molecule | atom] <molname> +++

WITH [<molname> [[and] CHARGE <charge>]]
UNITS [A | ANG | ANGSTROM | BOHR | AU | A.U.] +++

[DEG | DEGREE | DEGREES | RAD | RADIAN | RADIANS]
NOTE: UNITS must come before POINTS/RANDOM

CENTRE/CENTER PROBE [on] [COM]/[XYZ <x> <y> <z>]
{DC-AUX | DCAUX}
REGULARIZE [E1] [[and] E2] [with] ETA [=] <reg_eta>
{ENERGIES | ENERGY} [DISP/DISPERSION/E2DISP] +++

64

[&/and/,] [IND/INDUCTION/E2IND] [&/and/,] [ELST/E1ELST/ELECTROSTATICS] +++
[&/and/,] [E1EXCH] [&/and/,] [E2EXIND] & [E2EXDISP] & [OVERLAP] [NOTHING]
LATTICE
POINTS
[TRANSLATIONS | TRANSLATIONS-ONLY]
[SKIP-FIRST-COLUMN]
x1 y1 z1 [angle1 nx1 ny1 nz1]
x2 y2 z2 [angle2 nx2 ny2 nz2]
etc

--- <----end POINTS block with three hyphens.
RANDOM
POINTS [=] <number of points>
DRMIN [=] <dRmin>
DRMAX [=] <dRmax>
RADIAL [points] [=] <number of radial points per angular configuration>
SKIP [=] <number to skip> [angular] [configurations]
WRITE <filename> [APPEND]

ENERGY-FILE [PREFIX] <file prefix> [[in | using] STYLE <style index>]
OVERLAP-FILE [PREFIX] <file prefix> [[in | using] STYLE <style index>]
DEBUGGING T/TRUE/ON or F/FALSE/OFF
{QUIET | VERBOSE}

END

The options are:

{ PROBE | SCAN } [molecule | atom] { name } +++
[with] [[molecule | atom] { name }] [[and] CHARGE q]

Here the probe can be either a point charge or another molecule or both. Default is to use molecule B as the probe;
that is, molecule A remains fixed while molecule B is moved so that its origin is successively at the positions
specified by the grid. If a charge probe is used, the first-order electrostatic and second-order induction energies
will be scanned with this charge.

UNITS unit specification
Default, as usual, is to use the global units. For this to apply to the coordinates read in using the POINTS command
it should appear before POINTS.

CENTRE PROBE [on] [COM | XYZ x y z]
Default XYZ 0.0 0.0 0.0. The atom positions in a molecule are specified relative to a molecular centre, which
is initially the global origin of coordinates. This command may be used to redefine the molecular centre to be the
centre of mass, or some other point in global Cartesian coordinates. When the molecule is used as a probe this
centre is repositioned successively at the points of the grid.

{ ENERGIES | ENERGY } terms
The energy terms to be calculated at each point of the scan can be any or all of the following, separated by space,
and or &.

DISP | DISPERSION | E2DISP
IND | INDUCTION | E2IND
ELST | E1ELST | ELECTROSTATICS
E1EXCH
E2EX-IND
E2EX-DISP
OVERLAP
NOTHING

Default is to calculate all the energies. Use NOTHING if all you need is the grid that would be used. This might be
useful if the RANDOM grid is chosen (see below). Since the Hessians are not rotated at present, E(2)

disp,tot and E(2)
ind,tot

should not be calculated in scans that involve molecular rotations.

NOTE: E2EX-IND implies E2IND and E2EX-DISP implies E2DISP. This is because the second-order exchange
energies use their polarization counterparts to obtain an empirical scaling factor. See Misquitta and Szalewicz
[2005] and Misquitta et al. [2005] for details.

65

{ REG | REGULARIZE | REGULARISE } terms ETA [=] η
Use a regularized form of the perturbation operator for the terms specified, which may be [E1ELST | ELST | E1]
and/or [E2IND | IND | E2]. Default is to use the unregularized operator. The dispersion is never regularized.

ENERGY-FILE file-prefix [[in | using] STYLE index
OVERLAP-FILE file-prefix [[in | using] STYLE index
Defaults file prefixes are energy_file and overlap_file. The file suffix used is .dat in both cases. Each file
will contain a description of the dimer, the units used, and the translation and rotation parameters used to position
the probe molecule. The rotation is in angle–axis form. The molecule being probed stays in the same position
throughout the scan. The energy file will contain the energies including total overlap, and the overlap file will
contain the distributed overlap.

There are two file styles. The second (STYLE 2) is recommended and is the default. This style is both human-
readable and parsable by CamCASP and can be read in for later use.

These are plain text files, and are in a KEYWORD value/s format that is readable by CamCASP. They are in free
format and can be edited quite easily. For example, multiple energy files can be joined into one large one. If you
need to edit them, do not remove any fields, since the parser is used to read them back.

The configurations for which the energy is to be calculated are specified by one of the options LATTICE, POINTS
or RANDOM.

LATTICE
Create a grid of points using the LATTICE module. This can only be used if you are probing a molecule with an
atom as no rotations can be created using the LATTICE module.

POINTS
[SKIP-FIRST-COLUMN]
[TRANSLATIONS | TRANSLATIONS-ONLY]

points, one per line
{ --- | END }
This option requires the points to be listed immediately following. The most convenient way to do this is to read
them from a file:
READ file-name
or to include the file in the data:
#include file-name
SKIP-FIRST-COLUMN is used if the first column of the file contains index numbers for the listed points, which is
the case if the file was generated by a previous energy scan. TRANSLATIONS or TRANSLATIONS-ONLY specifies
that the probe is not to be rotated. The points themselves should be given, one per line, as Cartesian coordinates in
whatever units have been specified, each followed by an angle and axis of rotation unless TRANSLATIONS-ONLY
was specified. That is, the layout is

x1 y1 z1 [ψ1 nx1 ny1 nz1]
x2 y2 z2 [ψ2 nx2 ny2 nz2]
...

If TRANSLATIONS-ONLY was specified, angle-axis data may be present but will be ignored provided they are on the
same line as the translation data. Blank lines and lines beginning “!” are ignored. The list of points is terminated
by a line containing just ‘---’ or ‘END’. This line should occur in the main data stream, not in an included file.

RANDOM
POINTS N
DRMIN dRmin
DRMAX dRmax
RADIAL [points] [=] number of radial distances per orientation
SKIP skip [angular] [configurations]
WRITE \emph{filename} [APPEND]

{ --- | END }
This option generates a set of N configurations (default 500) randomly, by the following scheme. First an orien-
tation of the dimer is generated using a Sobol pseudo-random scheme, and the distance of van der Waals contact
R0 for this orientation is determined, using standard van der Waals radii. The energy is calculated at one or more
random distances not less than R0 + dRmin and not greater than R0 + dRmax. The defaults for dRmin and dRmax are
−1.5 bohr and +1.2 bohr.

66

The RADIAL and SKIP commands allow some control over the kind of grid. With RADIAL you can specify the
number of radial points (randomly chosen to lie in [R0 + dRmin,R0 + dRmax]) per dimer orientation. The default
is 5 points per orientation. The SKIP command allows you to skip some number of orientations; for example, if
you have done a scan using 500 angular orientations and want to add a further 1500, you would specify 2000
orientations and skip the first 500. The orientations are not obtained randomly, but using a Sobol sequence, which
is a non-random scheme designed to cover configuration space as uniformly as possible, however many points are
used.

The WRITE command writes out the list of configurations to the specified file. If APPEND is present, the data will
be appended to the file that should be already present.

9.18 Overlap model

Calculates the density overlap for use with the density-overlap model of the exchange–repulsion energy. This is
done in two stages. First, the exchange-repulsion energies are fitted to the total density overlap:

e ≡ E(1)
exch ≈ K0S =

∑
a∈A,b∈B

KabS ab,

where the total density overlap S is partitioned via the density-fitting procedure into a sum of atom–atom terms. In
this fit all the Kab have the same value K0. The quantity minimized is

χ2 =
∑

p

w(ep)
[K0S p

ep
− 1

]2
,

where w(e) is a weight that depends on the energy e (see below).

In the second stage, the coefficients Kab are permitted to have different values depending on the atom types. How-
ever they are mildly constrained by imposing a penalty function that discourages values that are too different from
K0. The quantity minimized is now

χ2∑
p w(ep)

+
∑
ab

λ(Kab − K0)2,

with

χ2 =
∑

p

w(ep)
[∑

a∈A,b∈B KabS ab
p

ep
− 1

]2
.

The configurations and S ab
p values, and the fitted Kab values, are written to files suitable for input to Orient.

Molecules will often have symmetry. In CamCASP symmetry is handled using the TYPE specification (see Sec. 9.2)
that sets the types of each site. The overlap matrix is symmetrized between site types within each molecule as
follows:

S ab
p =

∑
i=a

∑
j=b

S i j
p (NoSymm) (22)

Here S i j
p (NoSymm) is the matrix of overlap integrals for sites i in molecule A with type a and sites j in molecule

B with type j, and S ab
p is the symmetrized overlap matrix for types a and b.

Additionally, sites between molecules may have the same type. This would be the case for a symmetric dimer
A...A, but it could also be that an approximate symmetry has been imposed to make, say, all hydrogen atoms have
the same type. If this is the case, an additional symmetrization of the overlap matrix may be performed using the
SYMMETRIZE-BETWEEN-MOLECULES command described below.

The syntax for this module is

BEGIN OVERLAP-MODEL
UNITS [HARTREE | HARTREES] [KJMOL | KJ/MOL] [CM-1 | 1/CM]
WEIGHT [NONE] [TYPE <number>] [and] [{E0 | E_0} [=] <E_0>] +++

[and] [ALPHA [=] <alpha>]

ENERGY [=] [sign] <component> [[sign] <component>] ...

67

where
sign = + or -
and
component = E1ELST, E1ELST(AS), E1EXCH, E2IND, E2IND(AS), E2EXIND,

E2DISP, E2DISP(AS), E2EXDISP, DELTA
or a composite energy such as

E1PEN = E1ELST - E1ELST(AS)
E2PENIND = E2IND - E2IND(AS)
E2PENDISP = E2DISP - E2DISP(AS)
E2PEN = (E2IND - E2IND(AS)) + (E2DISP - E2DISP(AS))
E2EXCH = E2EXIND + E2EXDISP
E2INT = E1ELST + E1EXCH + E2IND + E2EXIND + E2DISP + E2EXDISP

ENERGY-OPTIONS [CHECK-ASYMP] [ABS-MAX-ENERGY [=] <value>]

{EMAX | E-MAX} [=] <maximum energy>
{EMIN | E-MIN} [=] <minimum energy>
ENERGY-FILE <full file name of energy file>
OVERLAP-FILE <full file name of distributed overlap file>
CONDITION [number] [=] <condition number for solver>
CONSTRAINT [=] <lambda>
[SYMMETRIZE-BETWEEN-MOLECULES | SYMMETRIZE]
ORIENT [files] [YES | NO | TRUE | FALSE] [ISOTROPIC-SITES] [ANCHOR-LIST] +++

[SHAPE-SYMMETRY]
ONLY-TOTAL-ORIENT [C6] [NO-WEIGHTS]
DEBUGGING T/TRUE/ON or F/FALSE/OFF
QUIET
VERBOSE
[RESET | DEFAULTS | DEFAULT]

END

The options are:

UNITS [HARTREE | HARTREES] [KJMOL | KJ/MOL] [CM-1 | 1/CM]
Specify the units to be used for energies, if different from the global default.

WEIGHT [TYPE index] [and] [{E0 | E_0} [=] e0] [and] [ALPHA [=] α]
Specify the weighting scheme for the data points. The weight w(e) for a point with energy e is, according to the
index,

0: 1

1:
(
1 + (e/e0)

)−1

2:
(
1 + (e/e0)2)−1

3: (e0/e) + 1

4: exp
[
−α

(
ln(e/e0)

)2]
The last of these is the scheme used by Hodges and Wheatley [2000]. It is recommended and is the default. The
default parameters are e0 = 20.0 kJ mol−1 and α = 1/ ln 10.

EMIN Emin
EMAX Emax
Energy values outside the range specified are ignored (given zero weight). Defaults: Emin = 0.01 kJ mol−1, Emax =

100 kJ mol−1.

ENERGY [=] E1EXCH [+ | -] E1PEN [+ | -] +++
[+ | -] [E2EX-IND | E2EXIND] [+ | -] [E2EX-DISP | E2EXDISP] +++
[+ | -] [E2PEN-IND | E2PENIND] [+ | -] [E2PEN-DISP | E2PENDISP] +++

68

[+ | -] DELTA
The energy to be fitted to can be defined using this statement. By default, the energy used is
E1EXCH + E2EXIND + E2EXDISP + E1PEN + E2PENIND + E2PENDISP + DELTA.
These energies are:

• E1EXCH: The first-order exchange energy, E(1)
exch.

• E2EX-IND: The second-order exchange-induction energy, E(2)
ind,exch.

• E2EX-DISP: The second-order exchange-dispersion energy, E(2)
disp,exch.

• E1PEN: The first-order penetration energy defined as E(1)
elst − EAsymp

elst .

• E2PEN-IND: The induction contribution to the second-order penetration energy defined as E(2)
ind,tot − EAsymp

ind .

• E2PEN-DISP: The dispersion contribution to the second-order penetration energy defined as E(2)
disp,tot−EAsymp

disp .

• DELTA: A correction energy. This energy can be anything, and is left to the user. For example, it could be
defined to be the difference between SAPT(DFT) and CCSD(T) energies.

Alternatively, E2EXCH can be used as a synonym for E2EX-IND + E2EX-DISP and, likewise, E2PEN can be used
for E2PEN-IND + E2PEN-DISP. These energies are all in the energy file (see below). We will usually use only +
signs in the energy expression.

ENERGY-OPTIONS [CHECK-ASYMP] [ABS-MAX-ENERGY [=] value]
The option CHECK-ASYMP will check the energies calculated with the multipole models (the asymptotic forms of
the energy components) for missing values. If an energy is identically zero, that dimer is removed from the list.

The energy bounds set using EMIN and EMAX are useful for selecting configurations but these are not foolproof.
There are instances where, because of energy cancellations with the multipole-expanded energies, repulsive con-
figurations are included when they should not, to the detriment of the fit. This can be avoided using the option
ABS-MAX-ENERGY to set an upper limit to the absolute values of the individual interaction energy components. By
default this upper limit is set to be 100|Emax|.

SYMMETRIZE-BETWEEN-MOLECULES
As described above, the overlap matrix is symmetrized between site types within each molecule.
If SYMMETRIZE-BETWEEN-MOLECULES is set, the site type information is used to symmetrize the overlap matrix,
S ab

p , for site types between molecules A and B as follows:

S ab
p (symm) = S ab

p + { S ba
p , if b ∈ A and a ∈ B } (23)

where a and b are unique site types on molecules A and B, resp.

This command would be used for a dimer of the same molecule, or when you have assumed approximate symme-
tries between molecules.

CONSTRAINT [=] λ
Specifies the parameter to be used in the constrained fit. Default 10−8.

CONDITION [NUMBER] [=] c
If the least-squares problem leads to an ill-conditioned matrix, the problem is reduced to one with estimated
condition number less than 1/c. The default value, c = 10−7, should be satisfactory.

ENERGY-FILE full file name of energy file
The energy file will have been created from the ENERGY-SCAN module.

OVERLAP-FILE full file name of overlap file
This is the file containing the distributed overlap. If the OVERLAP-MODEL block follows the ENERGY-SCAN block in
a CamCASP run, then the file name need not be specified here as it will be passed internally.

The ENERGY-FILE and OVERLAP-FILE commands can appear as many times as needed. This is particularly useful
if data points from multiple runs are needed for an overlap model calculation. Make sure that the sequence of files
is the same for both of them. That is, if energies and overlaps have been computed in three runs, resulting in three
sets of files, the sequence should be:

69

ENERGY-FILE energy_file_1.dat
ENERGY-FILE energy_file_2.dat
ENERGY-FILE energy_file_3.dat
OVERLAP-FILE overlap_file_1.dat
OVERLAP-FILE overlap_file_2.dat
OVERLAP-FILE overlap_file_3.dat

The recommended practice however is to generate the energy files using an MC basis but a DC auxiliary basis,
while the overlap-mode calculation has to be done using an MC auxiliary basis and so requires a separate Cam-
CASP job. This second job needs an energy-scan section just to read in the data points and to generate the overlap
file. The overlap-model section will then use this overlap file, which can be passed internally, and the energy file
from the previous job.

ORIENT [files] [YES | NO] [ISOTROPIC-SITES]
By default, the results of the constrained overlap model will be used to construct input files for Orient. These input
files are needed to obtain the fit to the Born–Mayer term that describes the short-range interaction. It is done in
a site–site form, so a file is generated for every pair of site types. Using this command the creation of these files
can be suppressed. Use ISOTROPIC-SITES to write out the Orient command files for a potential with all sites
isotropic.

The generated Orient files normally include separate data files for optimizing the individual site-site potentials, as
well as a data file for optimizing the total potential. The site–site fits should be carried out first, and the resulting
parameters edited into the data file for the total potential fit. It will often be necessary to restrict the full optimization
by anchoring the parameters to their initial values by harmonic constraints, so that they don’t drift to physically
unreasonable values. The anchor definition can be set up using the the anchors.pl script. Details of the procedure
can be found in the CamCASP Wiki at https://jasper.ph.qmul.ac.uk/wiki/ajm:camcasp:potentials.

ONLY-TOTAL-ORIENT [C6] [NO-WEIGHTS]
Use the ONLY-TOTAL-ORIENT command to write out the Orient file for the entire potential. Use this when fine-
tuning the potential fit by relaxing all or some parameters using anchors. By default we is assumed that the C6
coefficients will not be relaxed. Use the C6 option to generate an Orient file to relax these coefficients. Likewise,
by default weights will be included in the Orient command file. The NO-WEIGHTS option will suppress this.

RESET
Parameter changes are normally saved. To reset to the default parameters, use this command.

9.19 Integrals

The integral routines are not meant to be accessed directly, but there may well be situations which demand it, so
CamCASP allows direct control over the integrals. While almost all integrals are computed using density-fitting
techniques, some can be computed without this approximation.

BEGIN/SET { DF-INT | DF-INTEGRALS | DF-INTS | INTEGRALS }
INT {TYPE <type>} {DESC <description>} +++

[and] [SWITCH [=] <switch>] [and] [PRINT] [and] [ROTATE]
GEN-INT {TYPE <type>} {DESC <description>} +++

[and] [SWITCH [=] <switch>] [and] [PRINT] [and] [ROTATE]
[DF-CONSTRAINTS | CONSTRAINTS] [ETA [=] <eta>] +++

[and] [LAMBDA [=] <lambda>] +++
[and] [TYPE [=] [SITE | INTER-SITE] [repulsion | self-repulsion]]

DF-TYPE-DIMER [OO | {OV | VO}]
DF-TYPE-MONOMER [OO | {OV | VO} | {NN | FULL}]
QUIET
VERBOSE
DEBUG/DEBUGGING [T/TRUE/ON/YES or F/FALSE/OFF/NO]
RESET

END

Options:

70

INT TYPE type DESC description +++
[and] [SWITCH [=] switch] [and] [PRINT]

The INT command will cause a particular integral to be computed. Integrals are referenced by two four character
codes: the integral type (TYPE) and the description (DESC).

The integral types describe which operators are used. At present, the following integral types are available (chem-
ical notation is used for all integrals):

• 2-electron integral types: OVOV, VVOO, OOOO
O refers to an occupied orbital and V to a virtual orbital.

• Nuclear integrals: NUCA, NUCB
NUCA use the nuclei of molecule with label A and NUCB use nuclei from the molecule with label B.

• Integrals with a point-charge probe: PROB
These are a special case of the nuclear integrals where the ‘nucleus’ is a point charge.

• Overlap integrals: OVRL

• Miscellaneous integrals: See module df_integrals for details.

The integral description sets the kinds of basis functions or molecular orbitals that the operator operates on. There
are too many of these to describe here, but the main ones are:

• 4-index descriptions: AAAA, BBBB, AABB, ABAB, ABBB, AAAB
These are used for the 2-electron integrals only, though not all combintations are possible.

• 2-index descriptions: OOAA, OOBB, OOAB
These are used for the nuclear, probe and overlap integral types.

• Integrals of the auxiliary bases: __XA, __XB, XAXB, _XAB
Here the X denotes an auxiliary basis function and A, B, AB denote molecule A, B and the dimer (AB).
Once again, these are used mainly with the nuclear and probe integrals.

• Miscellaneous descriptions: See module df_integrals for details.

The SWITCH option allows us to control the method used to obtain particular integrals. Here SWITCH = 0 is the
default, which uses density-fitting wherever possible. SWITCH = 1 results in some integrals being computed with-
out density-fitting. This may seem a good idea at first sight, but since we frequently see a cancellation of errors
between integrals of different kinds, calculating some accurately could result in even larger errors in the end. This
option should therefore be used with caution.

However there is also an INTEGRAL-SWITCH option under each of the E1ELST, E1EXCH, E2IND and E2DISDP
blocks, which allows the setting to be changed independently for each of these. Here the recommended value, and
the default, is 1, i.e. to use density-fitting wherever possible

At present, only the nuclear and overlap integrals can be computed without density-fitting.

The integrals are not printed unless the PRINT option is included in this line.

{REG | REGULARIZE} [with] ETA [=] regularization constant
Regularize the intermolecular potential — that is, remove the Coulomb singularities, replacing 1/rki by

(
1 −

exp(−ηr2
ki)

)
/rki in the attraction between nucleus k and electron i. See the Theory section (currently in prepara-

tion) for details. Default is no regularization.

GEN-INT TYPE type DESC description +++
[and] [SWITCH [=] switch] [and] [PRINT]

The generalized 2-electron integrals can be computed using this command. These integrals are defined as (Chemi-
cal notation):

v(i j|kl) = (i j|kl) +
(i| j)(k|vA|l)

NA
+

(i|vB| j)(k|l)
NB

+
(i| j)(k|l)
NANB

Enn, (24)

where (i j|kl) is the standard 2-electron integral, (i| j) is the overlap integral, (k|vA|l) is the nuclear integral with the
potential vA of the nuclei of molecule A, Enn is the nuclear–nuclear Coulomb energy, and NA is the number of
electrons of molecule A.

71

We assume canonical ortho-normal orbitals when calculating the generalized integrals.

{DF-CONSTRAINTS | CONSTRAINTS} [ETA [=] <eta>] +++
[and] [LAMBDA [=] <lambda>] [and] [GAMMA [=] <gamma>] +++
[and] [TYPE [=] [SITE | INTER-SITE] [repulsion | self-repulsion]]

By default, the integral routine uses the density-fitting solution without any constraints. If needed, the DF solution
with constraints can be used. Use this with caution. See the Density-fitting section for details on the options.

QUIET
VERBOSE
DEBUG

The parameters used in evaluating the primitive integrals can be changed using:

SET {INTEGRAL | INTEGRAL-PARAMETERS}
DUMMY-S <dummy S-exponent>
CUTOFF <integral cutoff>
KERNEL-CUTOFF <kernel integral cutoff>
OVERLAP-CUTOFF <overlap integral cutoff>

END

Options:

CUTOFF integral cutoff

This sets the cutoff used in the pre-screening of the 2-electron integrals calculated for the density-fitting. The
default cutoff is 10−12.

DUMMY-S dummy S-exponent
We evaluate our 2-index and 3-index, 2-electron integrals using the GAMINT integral module which forms part of
the Gamess(US) quantum chemistry code. This module computes 4-index integrals. So, in order to get the 2-index
and 3-index integrals, we use dummy functions in calls to gamint. The dummy functions are Gaussian orbitals of
s-symmetry and a very small exponent — ideally 0.0. The value of this exponent is set using this command. The
default value is 10−18. Values between 10−12 and 10−18 have been found to result in identical interaction energies
for a variety of systems.

We do not recommend changing this value.

KERNEL-CUTOFF <kernel integral cutoff>
This is the cutoff used to pre-screen the kernel integrals.

OVERLAP-CUTOFF <overlap integral cutoff>
This cutoff is used in the overlap pre-screening of certain real-space two and three index integrals.

10 Process: Syntax

The Process program is used to read distributed polarizabilities from either CamCASP or Orient and process
them in some way. It can perform tasks such as calculating average polarizabilities and anisotropic polarizabilities,
or writing local polarizabilities to file in LATEX table format, or writing an input file for the Pfit program with
either local or non-local polarizabilities. The program can also handle polarizabilities at multiple frequencies. The
INVERT command will apply the inversion operator on the distributed polarizabilities, to obtain the polarizabilities
for the enantiomorph of the current molecule. (This just involves some changes of sign, but it is easy to make
mistakes when doing it by hand.)

The CASIMIR command will create the input file for the Casimir program. The SKIP option to CASIMIR tells
the program to skip some of the initial frequencies. This is useful when the first frequency is 0.0 (i.e., static
polarizabilities) as this one is not needed by Casimir.

The Pfit code can refine polarizabilities (as yet, only for one frequency at a time). An input file for such a refine-
ment can be created using the PFIT...PENALTIES command. PENALTIES tells Process that the Pfit file should
include the penalties section. This works for one molecule at a time so the second molecule (if defined) is ignored.

72

Also, only local polarizabilities can be refined. If the polarizabilities have been computed with multiple frequen-
cies, then a frequency can be chosen using the FREQ <index> sub-command. Thus, to create a Pfit input file for
the static polarizabilities, which are (typically) read in as the zeroth index in the polarizability file, use:
Molecule name

molecule specification
End
READ LOCAL polarizabilities for molecule name
USE BINARY file file-name
MAX rank maximum rank of polarizabilities on file
LIMIT rank to rank-limit
FREQUENCIES STATIC + number of freqs

END

WRITE

PFIT file for name with CUTOFF cutoff +++

and FREQ 0 use PENALTIES with WEIGHT 4

End

The default is to use the static, i.e., 0th frequency, so the FREQ command could be omitted. The default number of
non-zero frequencies is 10.

If the polarizability model needs to be simplified to include isotropic terms only, the following command can be
used: WRITE

PFIT file for name with CUTOFF cutoff +++

and FREQ 0 use PENALTIES with WEIGHT 4 +++

and ISOTROPIC polarizabilities

End

The ISOTROPIC command does the following: from polarizabilities localized using the method of [Le Sueur and
Stone, 1994], isotropic polarizabilities are calculated for each site. The Pfit input file for the refinement step is
then constructed using these isotropic terms (limited to the specified rank). Pfit then refines the polarizabilities as
in the standard WSM procedure. This option can be very useful in creating a polarizability and dispersion model
that is suitable for use in most standard simulation programs.

If a rank-limit is given, polarizabilities of higher rank are ignored. The Pfit program adjusts the input polarizabil-
ities to improve the agreement between the point-to-point polarizabilities given by the local polarizability model
and those calculated by CamCASP. The WEIGHT item specifies the weights attached to the input polarizabilities.
A weight of zero means that the input polarizability value is ignored, so the fitted value is determined purely by
least-squares fit to the point-to-point polarizabilities. A non-zero value means that the least-squares function is
modified by a penalty that depends on the square of the difference between the fitted value and the input value, so
it discourages excessive deviations from the input value. This is useful to prevent poorly-determined values from
becoming non-physical. This example uses WEIGHT 4, which is the default and the recommended weighting. The
possible weighting schemes are as follows, where t and u label components of the polarizability tensor and αtu is
its value in a.u.:

WEIGHT 0: w(t, u) = 0.0, ∀t, u.

WEIGHT 1: w(t, u) = 10−5, ∀t, u.

WEIGHT 2: w(t, u) = 10−5/(|αtu| + 1), ∀t, u.

WEIGHT 3: w(t, u) = 10−4/(α2
tu + 1), ∀t, u.

WEIGHT 4: w(t, u) =

10−5 if t ∈ 10, 10c, 10s and u ∈ 10, 10c, 10s
0.0 otherwise.

WEIGHT 5: w(t, u) =

10−5 if t ∈ 10, 10c, 10s and u ∈ 10, 10c, 10s
10−8 otherwise.

WEIGHT 6: w(t, u) =

10−5 if t ∈ 10, 10c, 10s and u ∈ 10, 10c, 10s
10−7 otherwise.

73

For frequency-dependent polarizabilities at frequency ω, the weight is modified to be

w(t, u)→
w(t, u)

1 + |ω|2
. (25)

It is often useful to limit the maximum rank of polarizabilities on some atoms, particularly H atoms. In order to
limit the rank of polarizabilities on non-H atoms to 2 and on H atoms to 1, use something like:
...define global data and molecule...

READ LOCAL polarizabilities for mol name
USE BINARY file file-name
MAX rank maximum rank of polarizabilities on file
LIMIT rank to 2

LIMIT rank to 1 for SITES H1 H2

FREQUENCIES STATIC + number of frequencies in file
END

Here the first LIMIT limits all sites to rank 2, and the second limits just sites H1 and H2 to rank 1. At present, this
can be done only for local polarizabilities.

If you wish to remove certain sites from the polarizability model altogether, use, for example:
READ LOCAL polarizabilities for name
USE BINARY file file-name
MAX rank maximum rank of polarizabilities on file
LIMIT rank to 0

LIMIT rank to 2 for SITES C N O

FREQUENCIES STATIC + number of frequencies in file
END

Assuming there are no charge-flow polarizabilities (i.e., they are all zero), this will retain only sites C N O.

The local polarizabilities refined by the Pfit program are written in ASCII format. They can be read in using:
READ LOCAL [polarizabilities] [for] [molecule] name
USE ASCII file file-name
MAX rank maximum rank of polarizabilities on file
FREQUENCIES STATIC + number of frequencies in file

END

This read (unlike the others) is done in a safe way. That is, the sites listed here can be in a different order from the
sites used to create the polarizability file. They must all be present — this allows a cross-check and hence reduces
the chance for errors.

The refinement using Pfit is done one frequency at a time. This means you get as many polarizability files as you
have frequencies — typically 10. To get Process to read them all in, concatenate them into one file using the UNIX
cat command. Just make sure you don’t mess up the order of the frequencies. Use the localize.py script to do
this (see sec. 8.3).

The point-to-point polarizabilities needed for the refinement will normally be calculated by CamCASP at 11 fre-
quencies — static plus 10 non-zero frequencies. These polarizabilities will be written into one file, but when used
by Pfit in the refinement procedure, they are needed in separate files: one for each frequency. A simple split
command (Linux or Unix) will not work due to the format of the file. Process can be used for this using the fol-
lowing commands: READ LOCAL [polarizabilities] [for] [molecule] name

FREQUENCIES STATIC + number of frequencies in file
P2P-POLS point-to-point polarizability file name [SPLIT]

END

The point-to-point polarizabilities will be put into files indexed by the frequency index. The localize.py script
takes care of this (see sec. 8.3).

To calculate dispersion coefficients we need to use the Casimir program. To get Process to write out an input file
for the Casimir program use, for example:
Write

Casimir file for molecule-1 and molecule-2 with cutoff cutoff skip n frequencies

End

This command will use polarizabilities for molecules 1 and 2 to create the input file for the Casimir program.
(Molecules 1 and 2 may be the same.) Only polarizabilities greater in magnitude than the cutoff specified will be
used; this helps to avoid what could be numerical noise and results in a smaller file. A suitable value for the cutoff

74

is 0.0001. The default is to skip the static (i.e., zeroth) frequency, so the SKIP command could be omitted. The
localize.py script takes care of this (see sec. 8.3).

Frequency-dependent polarizabilities are needed for the dispersion coefficient calculation. By default, the Process
program assumes that it should use the polarizabilities it has read in. There are some assumptions here:

• The Casimir program assumes frequencies on a certain quadrature grid. The default is a 10 point Gauss–
Legendre grid with β = 0.5a.u. (β is sometimes denoted ω0). The Process program assumes that you have
used this grid. As this is the default for CamCASP and Casimir, this should not be a problem. If you’ve used
another grid, edit the Casimir input file by hand. See the commands in the section on Casimir below.

• By default, CamCASP will calculate static polarizabilities in addition to the frequency-dependent polariz-
abilities. The static polarizabilities are put first in the polarizability file. The SKIP sub-command in the above
example can be used to tell the Process program to skip the first frequency, as follows:
WRITE

CASIMIR file for molecule-1 and molecule-2 with cutoff 0.0001 skip 1 frequency

END

Process now uses symmetry when creating the command files for Casimir and Pfit. Symmetry is imposed using
the TYPE command in the MOLECULE block. We highly recommend imposing symmetry, but bear in mind that sites
become equivalent only when the local axes are suitably oriented. The transformation to a local axis system are
not done by Process, but by the Pfit and Orient programs.

To write out a sub-set of the polarizability matrix use: WRITE

POLS for for molecule :: freq {site1 site2 | : : } {comp1 comp2 | : : }

END Where freq is the frequency index, site1,site2 are the site indices and comp1,comp2 are the component
indices. The first :: is needed. The optional colon-pairs : : are indicate that all indices will be used. So to
write out the static charge-flow terms for all pairs of sites use WRITE

POLS for for molecule :: 1 : : 1 1

END The charge-flow polarizabilities appear first in the list of polarizabilities. So you do need to know the order
of terms. This is not a very user-friendly format, but it works.

Here’s the full syntax of this program:

TITLE title string

{ SET GLOBAL-DATA | GLOBAL DATA | GLOBAL }
See commands described in sec. 9.1.

END

MOLECULE molecule-name
[UNITS { BOHR | AU | ANG | ANGSTROM | ANGSTROMS }]
[CHARGE] molecular-charge

label charge x y z [TYPE type]
label charge x y z [TYPE type]
...

END

READ [LOC | LOCAL | NONLOCAL | NON-LOCAL | P2P] [polarizabilities] [for] [atom | mol] name
USE [ASCII | BINARY] [file] file-name
Here max-rank is the maximum rank of polarizabilities in the file.
[MAXL | MAX | MAXIMUM] [rank] max-rank
The SITES command is deprecated. Use MOLECULE instead.
{ SITES | SITE } list of sites
LIMIT [rank] [to] limit [[for] { SITE | SITES } s1 s2 . . .

{ FREQUENCIES } [STATIC] [+ | PLUS] number of frequencies
P2P-POLS point-to-point polarizability file name [SPLIT]

END

[INVERT [molecule] name

WRITE
This prefix will be used for all data files. Optional.

75

FILE-PREFIX prefix for data files
CUTOFF cutoff

PFIT [file] [for] molecule-1 [[and] molecule-2]] [[and] FREQUENCY n] +++
[[use] PENALTIES] [[with] WEIGHT scheme] +++
[[and] [ISOTROPIC | ISO] [polarizabilities]]

CASIMIR [file] [for]molecule-1 [and] molecule-2] [SKIP n [frequencies]]
TABLE [for] [MOLECULE] name [and] [FREQUENCY index]
ORIENT [file] [for] [MOLECULE] name [with] [[ALL] [frequencies] | [FREQUENCY index]
POLS [for] [ATOM/MOL] <name> [CUTOFF <cutoff>] +++
:: freq {site1 site2 | : : } {comp1 comp2 | : : }

END

This command performs an analysis of the polarizabilities
ANALYSE [polarizabilities for] [MOLECULE] name [at] [FREQ index]

ENERGY
{FILE | READ} energy file (1)
{FILE | READ} energy file (2)
Use as many READ commands as you need.
WRITE new energy file
***The energy files will be combined into a single file.

The UNITS used in this file will be those specified in GLOBAL-DATA.
So this is a handy way not only to concatenate energy files,
but to convert units. ***

END

FINISH

Notes:

• Everything in the WRITE command is optional. The PFIT, CASIMIR and ORIENT options send data files
suitable for those programs to standard output. The TABLE option produces a tabular output suitable for
processing with LATEX.

• When data for several frequencies are read in, they are numbered from 1 and can be referred to individually
by this number, i.e. index in the syntax summaries above.

• The BINARY file comprises sections of the form
s1 s2 rank size
α(s1, s2, 1, 1:size)
α(s1, s2, 2, 1:size)
...

α(s1, s2,size, 1:size)

where s1 and s2 are site numbers, rank the maximum rank and size the dimension of the following polariz-
ability matrix α(s1, s2), which is written one row to a record. If size is zero or no polarizability matrix exists
for a particular pair of sites, nothing is written for that pair. size= (rank+1)2 but is included in the file for
convenience.

11 Casimir

Author: Anthony J. Stone

The Casimir program reads uncoupled local polarizabilities (i.e. of the form αaa
tu) for one or more molecules,

recouples them (i.e. to the form αa
v(j j′)), and computes dispersion coefficients up to C10. The code for C11 and C12

is included in the distribution, but is not activated as it hasn’t been adequately tested.

The input file for this program can be quite complicated for all but the smallest of molecules. This file will normally
be created by the Process program.

76

Input commands:

FREQUENCIES ω0 nfreq
Specify the base frequency and the number of frequencies to be used for the quadrature, in a.u. Defaults: 0.5 and
10, respectively.

SKIP [0 | 1]
By default, the static polarizability is not expected in the data file. If however it is present, SKIP or SKIP 1 will
skip the first of each set of values, assuming it to be the static polarizability. SKIP 0 cancels a previous SKIP 1.

MOLECULE name
Subsequent polarizability data refers to the specified molecule. The end of the data for this molecule is specified
by an END statement.

SITE name
Introduces polarizability data for the site specified, in the current molecule. It comprises a number of sets of the
form
t u
[α(0)] α(ω1) α(ω2) . . . α(ωn)
terminated by “End” on a line by itself. Here t and u are spherical tensor indices (‘00’, ‘10’, ‘11c’, etc.). The
polarizabilities, in a.u., follow on one or more lines. If the static polarizability is present, SKIP must be specified.
(See above.)

PRINT ALL | NONZERO
Printing option for the recoupled polarizabilities. The default is to print only the nonzero ones.

CGDIR path
Specify the directory where the coupling coefficients are to be found, if not in the current directory. These are
coupling coefficients for the real spherical tensor components. These coefficients are provided in $CAMCASP/data.

RECOUPLE [ALL | site site ...]
Calculate recoupled polarizabilities for all sites, or for the sites specified. This is not needed if a DISPERSION
command follows.

DISPERSION n molecule-1 molecule-2
Recouple the polarizabilities, if not already done, and calculate and print the dispersion coefficients to Cn, where
n is 6, 7, 8, 9, 10, 11 or 12. Coefficients up to C12 can be calculated, using (at present) only polarizabilities up to
octopole–octopole.

77

Appendices

A Basis sets

The basis set requirements for intermolecular interactions are quite different from those for standard energy calcu-
lations. We need basis sets that get the molecular properties correct. These tend to be bases augmented with diffuse
functions and off-bond functions. The augmented Dunning basis sets of triple-ζ quality or higher are generally
adequate for molecular properties and first-order interaction energies, but the off-bond functions are needed for
accurate second-order interaction energies.

We will give more details and references later, but for now, here’s a brief description of the basis sets that can
be used in CamCASP through Cluster. Bear in mind that CamCASP can use just about any basis set if you are
prepared to set up the input files. This setup is done for you by the Cluster program, at the expense of limiting
you to a few important types of basis set. These are:

• Monomer basis: Used in a properties calculation on a single molecule. This is the usual type of basis. It is
obtained by using a Cluster file with the block:
RUN-TYPE
Molecule name
Basis name
...

END
No MID-BOND or BASIS-TYPE command should be present.

The scripts supplied with CamCASP use a command-line option -mono to specify this type of basis.

• SAPT(DFT) basis sets: A SAPT(DFT) calculation of the interaction energy between two molecules (a
dimer) can be done using four kinds of basis set. These fall into two categories:

◦ Dimer-centred basis: In these basis types, the molecular orbitals and Hessians of each monomer is
constructed in the entire dimer basis.
There are two dimer-centred basis types: DC and DC+. The ‘+’ in the latter denotes the presence of basis
functions located between the interacting monomers. These are the ‘mid-bond’ functions that are very
important for obtaining basis-set converged dispersion energies.
A supermolecular calculation of the interaction energy would use this type of basis set (DC or DC+) so
as to correct for the basis set superposition error (BSSE). SAPT(DFT) is free from the BSSE so we are
free to use other kinds of basis set.

◦ Monomer-centred basis: In these basis types, the molecular orbitals and Hessians of each monomer
are constructed using the basis of the monomer, and possibly some basis functions located between
the two monomers (the ‘mid-bond’ set) and a subset of the basis set of the interacting partner (the
‘far-bond’ set).
Like the dimer-centred bases, the monomer-centred bases come in two varieties: MC and MC+. The latter
differs from the former by the presence of the ‘mid-bond’ or ‘far-bond’ functions. These extra basis
functions contribute very significantly to the convergence of the second-order energies and we strongly
recommend the MC+ type of basis.

These basis sets are obtained using a Cluster command file with the lines:
RUN-TYPE
Molecules name of A and name of B
Basis name
Basis-Type { MC | MC+ | DC | DC+ }
Mid-bond { 3s2p1d | 3s2p1d1f } and Type { weighted | COM }
...

END
The Mid-bond command will be ignored for types MC and DC. The type of mid-bond set determines where
it gets placed. The weighted option is recommended for large molecules. There are only two types of mid-
bond set supplied with CamCASP. This is because interaction energies are largely insensitive to the kinds of
functions used. We recommend the 3s2p1d set for most calculations.

78

B Dispersion coefficients: in detail

The distributed C6, C7 and C8 dispersion coefficients can be obtained using the following steps. We have written a
few simple scripts to perform some of the steps in this procedure, but you will still have to do some small tasks by
hand.

Before getting to this, we will have had to perform a calculation of the non-local polarizabilities (say, ranks 0
to 4) at 10 frequencies, and the point-to-point polarizabilities (on a grid of 1000 to 2000 points) at the same 10
frequencies. These calculation are done in a standard properties calculation with the CamCASP program.

Let’s use C6Br2ClFH2 (XIII) as an example.

First of all we decide which axis system would be most appropriate for this molecule. The C2v symmetry of XIII
makes this an easy choice. Here is the local axis file for XIII:
$ cat local_axes
Sites

! Units used: BOHR
C1 2.27448932 -0.63093982 0.00000000
C2 2.29369649 -3.26609468 0.00000000
C3 0.00000000 0.74116754 0.00000000
C4 -2.27526222 -0.62679565 0.00000000
C5 -2.29946016 -3.26296530 0.00000000
C6 -0.00413850 -4.52851101 0.00000000
BR1 -5.43183783 1.06069375 0.00000000
BR2 5.43383527 1.05079536 0.00000000
CL 0.00318230 3.99305149 0.00000000
F -0.00577500 -7.08124548 0.00000000
H1 -4.05673525 -4.30060061 0.00000000
H2 4.04880407 -4.30740551 0.00000000

End

Axes
C1 z from C1 to BR2 x from C1 to C2
BR2 z from C1 to BR2 x from C1 to C2
C2 z from C2 to H2 x from C2 to C6
H2 z from C2 to H2 x from C2 to C6
C3 z from C3 to CL x from C3 to C4
CL z from C3 to CL x from C3 to C4
C4 z from C4 to BR1 x from C4 to C5
BR1 z from C4 to BR1 x from C4 to C5
C5 z from C5 to H1 x from C5 to C6
H1 z from C5 to H1 x from C5 to C6
C6 z from C6 to F x from C6 to C2
F z from C6 to F x from C6 to C2

End

This choice of axes imposes the C2v symmetry. If we had wished to use the global axis system, the Axes...End
block would not be needed.

First split the non-local polarizability file which contains polarizabilities at all computed frequencies (1+10 in this
example) into 11 parts; one for each frequency. This can be done with a split command on a Linux system (see
the man page for split for details), or using Process with the following input file (at present, this file is created
by hand):

$ cat split_NL4.prss
!
! execute with: process < split_NL4.prss
!

read non-local pols for XIII
Use ascii file XIII_0.0005_1000_f11_NL4.pol
Maximum rank 4
! Use LIMIT to limit the rank, but it’s not essential here.
! Limit rank to 2

79

Sites C1 C2 C3 C4 C5 C6 BR1 BR2 CL F H1 H2
Frequencies Static + 10

End

Write
ORIENT file for XIII with Freq 0
ORIENT file for XIII with Freq 1
ORIENT file for XIII with Freq 2
ORIENT file for XIII with Freq 3
ORIENT file for XIII with Freq 4
ORIENT file for XIII with Freq 5
ORIENT file for XIII with Freq 6
ORIENT file for XIII with Freq 7
ORIENT file for XIII with Freq 8
ORIENT file for XIII with Freq 9
ORIENT file for XIII with Freq 10

End

Finish

On execution, Process creates the files XIII_NL4_000.pol, XIII_NL4_001.pol etc. As always, the file with
index 0 or 000 contain the static polarizabilities.

Now we create input files for Orient and Process input file using Cluster. Here’s our Cluster input file

$ cat XIII.clt
! XIII : Cluster input file
!
UNITS bohr
Overwrite Yes

Molecule XIII
! XIII MP2/6-31G(d,p) optimised using Gaussian
UNITS Angstrom
C1 6.0 1.203608 -0.333879 0.000000
C2 6.0 1.213772 -1.728343 0.000000
C3 6.0 0.000000 0.392209 0.000000
C4 6.0 -1.204017 -0.331686 0.000000
C5 6.0 -1.216822 -1.726687 0.000000
C6 6.0 -0.002190 -2.396385 0.000000
Br1 35.0 -2.874405 0.561295 0.000000
Br2 35.0 2.875462 0.556057 0.000000
Cl 17.0 0.001684 2.113032 0.000000
F 9.0 -0.003056 -3.747234 0.000000
H1 1.0 -2.146732 -2.275780 0.000000
H2 1.0 2.142535 -2.279381 0.000000

End

! Write XIII in ORIENT format and PROCESS command file

Run-Type
Properties
Molecule XIII
Camcasp-path usr/local/camcasp
ORIENT file
PROCESS file
SITES file
INTERFACE files

End

Finish

Notice that we have used the CAMCASP-PATH command to tell Cluster where the CamCASP installation is. This
is the only place you need do this. On execution, Cluster generates the files XIII.ornt and XIII.prss.

80

We will now calculate localized polarizabilities using the localization procedure of Le Sueur and Stone [1994] that
is programmed in Orient. Let’s look at the file XIII.ornt:

$ cat XIII.ornt
! ORIENT localization file for XIII

UNITS BOHR

Parameters
Sites 13 polarizable 13
S-functions 10000
Alphas 15000

End

Types
C Z 6
Br Z 35
Cl Z 17
F Z 9
H Z 1

End

Molecule XIII at 0.0 0.0 0.0
...molecule geometry...

End

Polarizabilities for XIII
Read rank 4 sites +++

C1 C2 C3 C4 C5 C6 BR1 BR2 CL F +++
H1 H2

#include XIII_NL4_<INDEX!000>.pol
Limit rank 2 for +++

C1 C2 C3 C4 C5 C6 BR1 BR2 CL F +++
H1 H2

Sum-rule test 1e-6
Localize test 1e-6 sites +++

C1 C2 C3 C4 C5 C6 BR1 BR2 CL F +++
H1 H2

End
Edit XIII

#include <LOCAL-AXES!local_axes>
Bonds Auto

End

Polarizabilities for XIII
Write limit 2 file XIII_L2_<INDEX!000>.pol sites +++

C1 C2 C3 C4 C5 C6 BR1 BR2 CL F +++
H1 H2

Print limit 2 +++
C1 C2 C3 C4 C5 C6 BR1 BR2 CL F +++
H1 H2

End

Finish

There are two things we need to change:

• The local axes need to be set using the LOCAL-AXES tag. So replace LOCAL-AXES with the name of our local
axes file. This can be done by editing the file, or using the replace command described next.

If you are working in the global axis system, comment out or delete the line containing the LOCAL-AXES tag.

• INDEX is the frequency index. It is a three digit tag of the form 000, 001, 002 etc. We will have to replace
INDEX with each of these indices, and run Orient for each one in turn.

81

Both this and the LOCAL-AXES replacements can be done from the command line using the replace com-
mand supplied with CamCASP:

$ ${CAMCASP}/bin/replace LOCAL-AXES=local_axes INDEX=001 < XIII.ornt > XIII_1.ornt

Actually the default value of LOCAL-AXES is local_axes so the first argument of the replace command
could be omitted altogether.
NOTE: Do not try to overwrite the XIII.ornt file using

$ ${CAMCASP}/bin/replace INDEX=001 < XIII.ornt > XIII.ornt

This will result in you losing the file XIII.ornt. Don’t worry if you do do this my mistake as it can be
re-generated using the Cluster code in a single command.

After Orient has been run for each of the frequency indices, we will have the localized polarizabilities in binary
format in the files XIII_L2_000.pol, XIII_L2_001.pol, etc.

Before going onto the next step, we need to do a couple of things:

• Concatenate these binary localized polarizability files into one file. Use the script cat_local.bash (located
in $CAMCASP/scripts/dispersion/) for this:

$ $CAMCASP/scripts/dispersion/cat_local.bash XIII

This will create the file XIII_L2_0f10.pol. The ‘0f10’ indicates the file contains the static polarizabilities
and frequency-dependent polarizabilities at 10 frequencies.

• Split the point-to-point polarizabilities file into 11 parts, one for each frequency. The point-to-point polariz-
abilities will be used in the refinement procedure. At present, they are computed at 11 frequencies (default)
by CamCASP and put in one file. But Pfit can handle only one frequency at a time and consequently expects
to read in the point-to-point polarizabilities computed at a single frequency. So we split the file into 11 parts
using Process. The input file for this is:

read P2P pols for XIII
Frequencies Static + 10
! Use this command to split the P-2-P pol file:
P2P-Pols XIII_lim2.0_4.0_p2000_f11.p2p SPLIT

End

Finish

The split point-to-point polarizabilities will be put in files XIII_000.p2p, XIII_001.p2p, etc.

We are now set to refine these localized polarizabilities. The refinement is done using the Pfit program. The input
is somewhat complicated, but Process will write the input files for Pfit. We have already created the input file for
Process. It is file XIII.prss. Here’s what it looks like:

$ cat XIII.prss
TITLE PROCESS file for XIII
! Usage: process < XIII.prss

CAMCASP /usr/local/camcasp

Read local pols for XIII
Use binary file XIII_L2_0f10.pol
Maximum rank 2
Sites +++

C1 C2 C3 C4 C5 C6 BR1 BR2 CL F +++
H1 H2

82

Limit rank to 2
Limit rank to 1 for sites +++

H1 H2
Frequencies STATIC + 10
! Use this command to split the P-2-P pol file into 11 parts:
! P2P-Pols <point-2-point pol file> SPLIT

End

Write
PFIT file for XIII +++

with cutoff 0.0001 and freq <INDEX!0> +++
with penalties and weight 4

End

Finish

Once again we see the tag INDEX. As before, this tag will need to be replaced by the three digit frequency index
(000, 001, etc.) using:

$ ${CAMCASP}/bin/replace INDEX=000 < XIII.prss > XIII_0.prss

So do the replacement, and run Process for each of them and send the output of Process to a suitable file. The
output is the input for the Pfit code. So, for the static case, replace INDEX by 000 and use the command:

$ process < XIII.prss > ref_000.pfit

So what do one of these Pfit input files look like? Here’s a part of one file (some parts removed):

$ cat ref_000.pfit
Allocate

points 2000
batches 1
sites 12
rank 2
parameters 218

End

Data XIII_000.p2p

#include <SITEFILE!local_axes_pfit>

Polarizabilities
C1 C1 10 10 = C1_10_10_A
C1 C1 10 21c = C1_10_21c_A
C1 C1 10 21s = C1_10_21s_A
C1 C1 11c 11c = C1_11c_11c_A

...

...

...
H2 H2 11c 11s = H2_11c_11s_A
H2 H2 11s 11s = H2_11s_11s_A

End

Penalties
C1_10_10_A +++

5.74440962 0.00001000
C1_10_21c_A +++

1.94202436 0.00000000
C1_10_21s_A +++

8.35043368 0.00000000
...

83

...

...
H2_11c_11s_A +++

-1.02508681 0.00001000
H2_11s_11s_A +++

2.94522570 0.00001000
End

! Damping <factor>

Start

Export Polarizabilities to file XIII_ref_wt4_L2_f0.pol
Print Total Origin 0.0 0.0 0.0

Finish

The tag SITEFILE needs to be replaced with the name of the molecule definition and local axes file.

Now we are ready to refine the local polarizabilities at zero frequency (static):

$ pfit < ref_000.pfit > ref_000_pfit.out

The refined polarizabilities will be in file XIII_ref_wt4_L2_f0.pol. These are in ASCII format. Check them.
Also check the errors reported in the Pfit output in file ref_000_pfit.out.

Do this for all frequencies. By the way, we do not need the static polarizabilities for calculating the dispersion
coefficients; we just used them as an example. We will need the static polarizabilities for the induction energy
calculation. But that is the subject of another section (as yet unwritten).

Finally, we now have all the data needed to calculate the dispersion coefficients using the Casimir program. The
input file for this program is probably the most complicated of all. But once again, Process will come to our aid
and write out this file.

First concatenate all the refined local polarizabilities into one file using the script cat_refined.bash located in
$CAMCASP/scripts/dispersion/:

$ $CAMCASP/scripts/dispersion/cat_refined.bash XIII_ref_wt4_L2

The argument given to this script is the bit of the name given to the refined polarizability files: {NAME}_f<n>.pol,
where n is the polarizability index. Yes, this time n takes the values 0,1,2,3...,10 and not 000,001...,010
as before. We haven’t yet got all the bits consistent, but you get the idea.

This creates the file XIII_ref_wt4_L2_0f10_ref.pol. We added the extra ref to avoid accidentally overwriting
one of the earlier polarizability files. Either leave it there or move it to file XIII_ref_wt4_L2_0f10.pol.

Now copy file XIII.prss to XIII_casimir.prss and edit the latter to look like:

$ cat XIII_casimir.prss
TITLE PROCESS file for XIII
! Usage: process < XIII.prss

Global-Data
Camcasp /usr/local/camcasp

End

Read local pols for XIII
Use ascii file XIII_ref_wt4_L2_0f10.pol
Maximum rank 2
Sites +++

C1 C2 C3 C4 C5 C6 BR1 BR2 CL F +++
H1 H2

Limit rank to 2
Limit rank to 1 for sites +++

84

H1 H2
Frequencies STATIC + 10

End

Write
CASIMIR file for XIII and XIII +++

with cutoff 0.0001
End

Finish

Run Process:

$ process < XIII_casimir.prss > XIII_ref_wt4_L2.casimir

Now run the Casimir program:

$ casimir < XIII_ref_wt4_L2.casimir > XIII_ref_wt4_L2_casimir.out

And we’ve finially got our dispersion coefficients (here’s part of the output):

$ cat XIII_ref_wt4_L2_casimir.out
Title XIII ... XIII
XIII
Frequencies 0.5 10
Skip 0
Print nonzero

Molecule XIII
Site C1
10 10

5.72200000 5.70700000 5.61200000 5.27400000 +++
4.44000000 3.07700000 1.62100000 0.58700000 +++
0.11800000 0.00600000

...

...

...
Dispersion coefficients for XIII and XIII

C1 C1 C6 C7 C8
00 00 0 88.39684131 0.0 4820.75066614
00 11c 1 0.0 809.88012198
00 11s 1 0.0 477.13620553
00 20 2 -24.31832249 0.0 -3056.70651103
...
...
...

Finish

85

C Older Scripts

These scripts are still present, but have been superseded by Python scripts. However they are still available in case
there are issues with Python installations.

For an up-to-date usage of these script use <script> --help.

C.1 High-level scripts

Most CamCASP calculations can be set up and run using the high-level scripts in conjunction with one simple data
file.

The following scripts are currently available. They can all be executed with the single argument --help to print
brief usage details and exit.

• runSAPT
Script to run a complete SAPT(DFT) calculation to calculate the components of the interaction energy
between two molecules, or to calculate the properties (multipole moments and polarizabilities) of a single
molecule. The command is just
runSAPT JOB -q queue -M memory

The ‘queue’ may be bg to run the calculation in the background, or none just to set up all the files and
prepare a script for submitting the calculation. This allows you to modify any of the files if necessary. You
need to provide one simple data file, JOB.clt, to define the system and specify the calculation. For details see
§7 and the example in §8.1 below.

Because of an inconsistency in the site order used by these scripts and the newer Python scripts, your
Cluster input file needs to have the line SITE-ORDER OLD in the RUN-TYPE block. If this is not present,
the CamCASP interaction energy calculation will still proceed, but the results may be meaningless.

• search.pl
The output of a SAPT(DFT) calculation can be analysed using the script search.pl. It picks out the energy
terms from the CamCASP output file and displays them in a compact form.

• localize
Using the polarizability files from a properties calculation, this script will generate local polarizabilities
(static and dynamic). See §8.2.1 on p. 31 for details. The dynamic polarizabilities are then used to construct
dispersion coefficients, if required.

C.2 Low-level scripts

Some of the scripts provided in the CamCASP package are low-level ones that just perform one step in setting up
the job, for example by generating further files that are needed for the calculations. If you need to do something
unusual you may have to use the lower-level scripts directly, but for most purposes the high-level scripts will
suffice.

In all the following, JOB is the job-name, which identifies all the files belonging to the job — in particular, the
cluster input file, usually called JOB.clt. Most jobs involve a large number of files, however, so it is not a good
idea to rely on the job-name to distinguish files for different jobs from each other. Recommended practice is to run
every job in its own private directory (folder).

The starting-point for all tasks is the ‘cluster’ file, conventionally given the .clt suffix, which contains information
about the molecules involved, the basis sets to be used, and other details. Details are in §7. Once you have prepared
the input file for Cluster, called for example setup.clt, the cluster command is the first step in setting up the
job:
cluster < setup.clt

(It will usually be called by a script rather than directly.) This will produce a file called JOB.template, where
JOB is the file prefix specified (or implied) in the Cluster data file. It will also produce a number of other files —
for example JOB.cks and JOB_P.data — depending on the information in the .clt file.

86

Next, generate.pl is a low-level script that generates the input files for the Dalton ab initio calculation. These
have names like A.mol, and MA.mol. Again, the particular files that are produced depend on the nature of the
calculation.
generate.pl options JOB

The options to this command are as follows:
-monomer This is to be a properties calculation for a single molecule.
-mc+, -mc This is a dimer interaction calculation, using monomer-centred basis sets, with or

without midbond functions. mc+ is the default calculation type.
-dc+, -dc This is a dimer interaction calculation, using dimer-centred basis sets, with or without

midbond functions.
-h, �help Prints a help page to standard output.

Dalton also requires .dal files that describe the type of calculation to be done. Usually, these files do not depend on
the particular molecule or molecules for which the calculation is being done (they are described in the .mol files)
but in the case of DFT calculations using the asymptotically-corrected PBE0 functional it is necessary to specify
the molecular ionization potential in order to set up the asymptotic correction properly. Accordingly the dal.pl
command that sets up these files requires the ionization potentials:
dal.pl options

where the options are
[-j] JOB Specifies the jobname to be used as the file prefix
-a moleculeA Alternatively, the molecule names can be specified, in which case the jobname will be

constructed from them.
-b moleculeB For a dimer calculation, both molecules need to be specified.
-ipa or -ip IP Vertical ionization potential for molecule A, or for a monomer (in Hartree).
-ipb IP Vertical ionization potential for molecule B, if present.
-monomer This is to be a properties calculation for a single molecule.
-mc+, -mc This is a dimer interaction calculation, using monomer-centred basis sets, with or

without midbond functions.
-dc+, -dc This is a dimer interaction calculation, using dimer-centred basis sets, with or without

midbond functions.
The file CAMCASP/misc/IP.txt contains a list of ionization potentials for some small molecules; many others are
available in the NIST Chemistry Webbook at webbook.nist.gov/chemistry/. If the IP cannot be found there
or elsewhere in the literature, it is necessary to calculate it.

87

References
O. Akin-Ojo, R. Bukowski, and K. Szalewicz. Ab initio studies of He-HCCCN interaction. J. Chem. Phys., 119:

8379–8396, 2003.

R. Bukowski, R. Podeszwa, and K. Szalewicz. Efficient generation of the coupled Kohn–Sham dynamic suscepti-
bility functions and dispersion energy with density fitting. Chem. Phys. Lett., 414:111–116, 2005.

M. E. Casida. Time-dependent density-functional response theory for molecules. In D. P. Chong, editor, Recent
Advances in Density-Functional Theory, page 155. World Scientific, 1995.

M. E. Casida and D. R. Salahub. Asymptotic correction approach to improving approximate exchange-correlation
potentials: Time-dependent density-functional theory calculations of molecular excitation spectra. J. Chem.
Phys., 113:8918–8935, 2000.

S. M. Colwell, N. C. Handy, and A. M. Lee. Determination of frequency-dependent polarizabilities using current
density-functional theory. Phys. Rev. A, 53:1316–1322, 1995.

S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J.
Comp. Chem, 27:1787 – 1799, 2006.

M. Gruning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends. Shape corrections to exchange-correlation
potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J. Chem.
Phys., 114:652–660, 2001.

A. Hesselmann, G. Jansen, and M. Schütz. Density-functional theory-symmetry-adapted intermolecular perturba-
tion theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem.
Phys., 122:014103, 2005.

M. P. Hodges and R. J. Wheatley. Flexible multipole models for hydrogen fluoride. Phys. Chem. Chem. Phys, 2:
1631–1638, 2000.

B. Jeziorski, R. Moszynski, A. Ratkiewicz, S. Rybak, K. Szalewicz, and H.L. Williams. SAPT: A program for
many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies, vol-
ume B, page 79. STEF, Cagliari, 1993.

B. Jeziorski, R. Moszynski, and K. Szalewicz. Perturbation theory approach to intermolecular potential energy
surfaces of van der waals complexes. Chem. Rev., 94:1887–1930, 1994.

C. R. Le Sueur and A. J. Stone. Localization methods for distributed polarizabilities. Molec. Phys., 83:293–308,
1994.

T. C. Lillestolen and R. Wheatley. Atomic charge densities generated using an iterative stockholder approach.
J. Chem. Phys., 131:144101, 2009.

T. C. Lillestolen and R. J. Wheatley. First-principles calculation of local atomic polarizabilities. J. Phys. Chem. A,
111:11141–11146, 2007. doi: 10.1021/jp073151y.

A. J. Misquitta. Charge-transfer from regularized symmetry-adapted perturbation theory. J. Chem. Theory Com-
put., 9:5313–5326, 2013. doi: 10.1021/ct400704a.

A. J. Misquitta and A. J. Stone. Distributed polarizabilities obtained using a constrained density-fitting algorithm.
J. Chem. Phys., 124:024111, 2006.

A. J. Misquitta and A. J. Stone. Accurate induction energies for small organic molecules: I. Theory. J. Chem.
Theory Comput., 4:7–18, 2008a.

A. J. Misquitta and A. J. Stone. Dispersion energies for small organic molecules: first row atoms. Molec. Phys.,
106:1631 – 1643, 2008b.

A. J. Misquitta and K. Szalewicz. Intermolecular forces from asymptotically corrected density functional descrip-
tion of monomers. Chem. Phys. Lett., 357:301–306, 2002.

A. J. Misquitta and K. Szalewicz. Symmetry-adapted perturbation-theory calculations of intermolecular forces
employing density-functional description of monomers. J. Chem. Phys., 122:214109, 2005.

88

A. J. Misquitta, B. Jeziorski, and K. Szalewicz. Dispersion energy from density-functional theory description of
monomers. Phys. Rev. Lett., 91:33201, 2003.

A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz. Intermolecular potentials based on symmetry-
adapted perturbation theory with dispersion energies from time-dependent density-functional theory. J. Chem.
Phys., 123:214103, 2005.

A. J. Misquitta, A. J. Stone, and S. L. Price. Accurate induction energies for small organic molecules. 2. Develop-
ment and testing of distributed polarizability models against SAPT(DFT) energies. J. Chem. Theory Comput.,
4:19–32, 2008a. doi: 10.1021/ct700105f.

A. J. Misquitta, G. W. A. Welch, A. J. Stone, and S. L. Price. A first principles prediction of the crystal structure
of C6Br2ClFH2. Chem. Phys. Lett., 456:105–109, 2008b.

Alston J. Misquitta, Anthony J. Stone, and Farhang Fazeli. Distributed multipoles from a robust basis-space
implementation of the iterated stockholder atoms procedure. J. Chem. Theory Comput., 2014. doi: 10.1021/

ct5008444.

K. Patkowski, B. Jeziorski, and K. Szalewicz. Symmetry-adapted perturbation theory with regularized Coulomb
potential. J. Mol. Struct. (TheoChem), 547:293–307, 2001a.

K. Patkowski, B. Jeziorski, and K. Szalewicz. Symmetry-adapted perturbation theory with regularized coulomb
potential. J. Mol. Struct. (Theochem), 547:293–307, 2001b.

K. Patkowski, B. Jeziorski, and K. Szalewicz. Unified treatment of chemical and van der waals forces via
symmetry-adapted perturbation expansion. J. Chem. Phys., 120:6849–6862, 2004.

Konrad Patkowski, Krzysztof Szalewicz, and Bogumil Jeziorski. Induction and exchange-induction energy with a
regularized coulomb potential. private communication, 2012.

R. Podeszwa, R. Bukowski, and K. Szalewicz. Density-fitting method in symmetry-adapted perturbation theory
based on kohn-sham description of monomers. J. Chem. Theory Comput., 2:400–412, 2006.

Fazle Rob and Krzysztof Szalewicz. Asymptotic dispersion energies from distributed polarizabilities. Chem. Phys.
Lett., 000:000–000, 2013.

A. J. Stone. Distributed multipole analysis: Stability for large basis sets. J. Chem. Theory Comput., 1:1128–1132,
2005.

A. J. Stone and A. J. Misquitta. Atom–atom potentials from ab initio calculations. Int. Rev. Phys. Chem., 26:
193–222, 2007.

K. T. Tang and J. Peter Toennies. The damping function of the van der Waals attraction in the potential between
rare gas atoms and metal surfaces. Surf. Sci. Lett., 279:203–206, 1992.

David J. Tozer and Nicholas C. Handy. Improving virtual Kohn–Sham orbitals and eigenvalues: Application to
excitation energies and static polarizabilities. J. Chem. Phys., 109:10180–10189, 1998.

T. Verstraelen, P.W. Ayers, V. Van Speybroeck, and M. Waroquier. The conformational sensitivity of iterative
stockholder partitioning schemes. Chem. Phys. Lett., 545:138–143, 2012.

H. L. Williams, E. M. Mas, K. Szalewicz, and B. Jeziorski. On the effectiveness of monomer-, dimer-, and bond-
centered basis functions in calculations of intermolecular interaction energies. J. Chem. Phys., 103:7374–7391,
1995.

89

	Introduction
	Authors
	Citations

	What's new?
	Outline of the capabilities of CamCASP and other programs
	CamCASP limits

	Installation
	Building CamCASP from source

	Using CamCASP
	Workflows
	High-level scripts
	The runcamcasp.py script
	Low-level scripts

	Data conventions
	CLUSTER: Detailed specification
	Prologue
	Molecule definitions
	Geometry manipulations and other transformations
	Job specification
	Energy
	Crystal
	ORIENT
	Finally, …

	Examples
	A SAPT(DFT) calculation
	An example properties calculation
	Dispersion coefficients
	Using CLUSTER to obtain the dimer geometry

	CamCASP program specification
	Global data
	Molecule definition
	The EDIT module: Modifying a molecular specification
	Density-fitting
	Propagator settings
	Quadrature settings
	The ISA module
	Multipole moments
	Display
	Polarizabilities
	Lattice
	Numerical integration grid
	Electrostatic interaction
	First-order exchange (exchange-repulsion)
	Second-order induction energy
	Second-order dispersion energy
	Energy scan
	Overlap model
	Integrals

	PROCESS: Syntax
	CASIMIR
	Basis sets
	Dispersion coefficients: in detail
	Older Scripts
	High-level scripts
	Low-level scripts

